Plotly 可拖动图中的 reactiveValue() 问题
Problems with reactiveValue() in Plotly draggable graph
提前感谢您的帮助,因为这真的让我发疯。我正在尝试创建一个 plotly 散点图,我可以通过拖动它们来更改单个图的位置,从而更改回归线。重要的是,我想通过 pickerInput 过滤数据,仅 运行 分析数据的一个子集。
大多数事情都在工作,但是我对 reactiveValues() 的使用感到困惑。更具体地说,我相信 reactiveValues() 不能采用反应式数据框……在这种情况下是 mtcars 的过滤版本。我尝试了各种各样的事情,现在有点绝望了。下面是代码。我还附上了该代码的简化版本的代码,它工作得很好,但没有所有重要的过滤功能。
请帮忙!
library(plotly)
library(purrr)
library(shiny)
ui = navbarPage(windowTitle="Draggable Plot",
tabPanel(title = "Draggable Plot",
sidebarPanel(width = 2,
pickerInput("Cylinders","Select Cylinders",
choices = unique(mtcars$cyl), options = list(`actions-box` = TRUE),multiple = FALSE, selected = unique(mtcars$cyl))),
mainPanel(
plotlyOutput("p", height = "500px", width = "1000px"),verbatimTextOutput("summary"))))
server <- function(input, output, session) {
data = reactive({
data = mtcars
data <- data[data$cyl %in% input$Cylinders,]
return(data)
})
rv <- reactiveValues(
data = data()
x = data$mpg,
y = data$wt
)
grid <- reactive({
data.frame(x = seq(min(rv$x), max(rv$x), length = 10))
})
model <- reactive({
d <- data.frame(x = rv$x, y = rv$y)
lm(y ~ x, d)
})
output$p <- renderPlotly({
# creates a list of circle shapes from x/y data
circles <- map2(rv$x, rv$y,
~list(
type = "circle",
# anchor circles at (mpg, wt)
xanchor = .x,
yanchor = .y,
# give each circle a 2 pixel diameter
x0 = -4, x1 = 4,
y0 = -4, y1 = 4,
xsizemode = "pixel",
ysizemode = "pixel",
# other visual properties
fillcolor = "blue",
line = list(color = "transparent")
)
)
# plot the shapes and fitted line
plot_ly() %>%
add_lines(x = grid()$x, y = predict(model(), grid()), color = I("red")) %>%
layout(shapes = circles) %>%
config(edits = list(shapePosition = TRUE))
})
output$summary <- renderPrint({a
summary(model())
})
# update x/y reactive values in response to changes in shape anchors
observe({
ed <- event_data("plotly_relayout")
shape_anchors <- ed[grepl("^shapes.*anchor$", names(ed))]
if (length(shape_anchors) != 2) return()
row_index <- unique(readr::parse_number(names(shape_anchors)) + 1)
pts <- as.numeric(shape_anchors)
rv$x[row_index] <- pts[1]
rv$y[row_index] <- pts[2]
})
}
shinyApp(ui, server)
雪上加霜的是,这个没有过滤的代码版本工作得很好。
library(plotly)
library(purrr)
library(shiny)
ui = navbarPage(windowTitle="Draggable Plot",
tabPanel(title = "Draggable Plot",
mainPanel(
plotlyOutput("p", height = "500px", width = "1000px"))))
server <- function(input, output, session) {
rv <- reactiveValues(
x = mtcars$mpg,
y = mtcars$wt
)
grid <- reactive({
data.frame(x = seq(min(rv$x), max(rv$x), length = 10))
})
model <- reactive({
d <- data.frame(x = rv$x, y = rv$y)
lm(y ~ x, d)
})
output$p <- renderPlotly({
# creates a list of circle shapes from x/y data
circles <- map2(rv$x, rv$y,
~list(
type = "circle",
# anchor circles at (mpg, wt)
xanchor = .x,
yanchor = .y,
# give each circle a 2 pixel diameter
x0 = -4, x1 = 4,
y0 = -4, y1 = 4,
xsizemode = "pixel",
ysizemode = "pixel",
# other visual properties
fillcolor = "blue",
line = list(color = "transparent")
)
)
# plot the shapes and fitted line
plot_ly() %>%
add_lines(x = grid()$x, y = predict(model(), grid()), color = I("red")) %>%
layout(shapes = circles) %>%
config(edits = list(shapePosition = TRUE))
})
output$summary <- renderPrint({a
summary(model())
})
# update x/y reactive values in response to changes in shape anchors
observe({
ed <- event_data("plotly_relayout")
shape_anchors <- ed[grepl("^shapes.*anchor$", names(ed))]
if (length(shape_anchors) != 2) return()
row_index <- unique(readr::parse_number(names(shape_anchors)) + 1)
pts <- as.numeric(shape_anchors)
rv$x[row_index] <- pts[1]
rv$y[row_index] <- pts[2]
})
}
shinyApp(ui, server)
以下内容应该可以解决您的顾虑。
rv <- reactiveValues()
observe({
rv$data = data()
rv$x = data()$mpg
rv$y = data()$wt
})
提前感谢您的帮助,因为这真的让我发疯。我正在尝试创建一个 plotly 散点图,我可以通过拖动它们来更改单个图的位置,从而更改回归线。重要的是,我想通过 pickerInput 过滤数据,仅 运行 分析数据的一个子集。
大多数事情都在工作,但是我对 reactiveValues() 的使用感到困惑。更具体地说,我相信 reactiveValues() 不能采用反应式数据框……在这种情况下是 mtcars 的过滤版本。我尝试了各种各样的事情,现在有点绝望了。下面是代码。我还附上了该代码的简化版本的代码,它工作得很好,但没有所有重要的过滤功能。
请帮忙!
library(plotly)
library(purrr)
library(shiny)
ui = navbarPage(windowTitle="Draggable Plot",
tabPanel(title = "Draggable Plot",
sidebarPanel(width = 2,
pickerInput("Cylinders","Select Cylinders",
choices = unique(mtcars$cyl), options = list(`actions-box` = TRUE),multiple = FALSE, selected = unique(mtcars$cyl))),
mainPanel(
plotlyOutput("p", height = "500px", width = "1000px"),verbatimTextOutput("summary"))))
server <- function(input, output, session) {
data = reactive({
data = mtcars
data <- data[data$cyl %in% input$Cylinders,]
return(data)
})
rv <- reactiveValues(
data = data()
x = data$mpg,
y = data$wt
)
grid <- reactive({
data.frame(x = seq(min(rv$x), max(rv$x), length = 10))
})
model <- reactive({
d <- data.frame(x = rv$x, y = rv$y)
lm(y ~ x, d)
})
output$p <- renderPlotly({
# creates a list of circle shapes from x/y data
circles <- map2(rv$x, rv$y,
~list(
type = "circle",
# anchor circles at (mpg, wt)
xanchor = .x,
yanchor = .y,
# give each circle a 2 pixel diameter
x0 = -4, x1 = 4,
y0 = -4, y1 = 4,
xsizemode = "pixel",
ysizemode = "pixel",
# other visual properties
fillcolor = "blue",
line = list(color = "transparent")
)
)
# plot the shapes and fitted line
plot_ly() %>%
add_lines(x = grid()$x, y = predict(model(), grid()), color = I("red")) %>%
layout(shapes = circles) %>%
config(edits = list(shapePosition = TRUE))
})
output$summary <- renderPrint({a
summary(model())
})
# update x/y reactive values in response to changes in shape anchors
observe({
ed <- event_data("plotly_relayout")
shape_anchors <- ed[grepl("^shapes.*anchor$", names(ed))]
if (length(shape_anchors) != 2) return()
row_index <- unique(readr::parse_number(names(shape_anchors)) + 1)
pts <- as.numeric(shape_anchors)
rv$x[row_index] <- pts[1]
rv$y[row_index] <- pts[2]
})
}
shinyApp(ui, server)
雪上加霜的是,这个没有过滤的代码版本工作得很好。
library(plotly)
library(purrr)
library(shiny)
ui = navbarPage(windowTitle="Draggable Plot",
tabPanel(title = "Draggable Plot",
mainPanel(
plotlyOutput("p", height = "500px", width = "1000px"))))
server <- function(input, output, session) {
rv <- reactiveValues(
x = mtcars$mpg,
y = mtcars$wt
)
grid <- reactive({
data.frame(x = seq(min(rv$x), max(rv$x), length = 10))
})
model <- reactive({
d <- data.frame(x = rv$x, y = rv$y)
lm(y ~ x, d)
})
output$p <- renderPlotly({
# creates a list of circle shapes from x/y data
circles <- map2(rv$x, rv$y,
~list(
type = "circle",
# anchor circles at (mpg, wt)
xanchor = .x,
yanchor = .y,
# give each circle a 2 pixel diameter
x0 = -4, x1 = 4,
y0 = -4, y1 = 4,
xsizemode = "pixel",
ysizemode = "pixel",
# other visual properties
fillcolor = "blue",
line = list(color = "transparent")
)
)
# plot the shapes and fitted line
plot_ly() %>%
add_lines(x = grid()$x, y = predict(model(), grid()), color = I("red")) %>%
layout(shapes = circles) %>%
config(edits = list(shapePosition = TRUE))
})
output$summary <- renderPrint({a
summary(model())
})
# update x/y reactive values in response to changes in shape anchors
observe({
ed <- event_data("plotly_relayout")
shape_anchors <- ed[grepl("^shapes.*anchor$", names(ed))]
if (length(shape_anchors) != 2) return()
row_index <- unique(readr::parse_number(names(shape_anchors)) + 1)
pts <- as.numeric(shape_anchors)
rv$x[row_index] <- pts[1]
rv$y[row_index] <- pts[2]
})
}
shinyApp(ui, server)
以下内容应该可以解决您的顾虑。
rv <- reactiveValues()
observe({
rv$data = data()
rv$x = data()$mpg
rv$y = data()$wt
})