如何有效地计算偏移距离高斯图 numpy
How to calculate shifted distance gaussian map efficiently numpy
def build_gaussian_map(s, point, sigma=25):
x, y = point[0], point[1]
gmap = np.zeros(s)
for row in range(s[0]):
for col in range(s[1]):
gmap[row][col] = 1 / (2 * np.pi * sigma * sigma) * np.exp(-((x - row) * (x - row) + (y - col) * (y - col)) / (2 * sigma * sigma))
return gmap
s
- 二维数组形状
point
- 点坐标
我正在计算以图像的某个点为中心的距离高斯图point
。我可以使用矩阵运算以某种方式做到这一点吗?
结果图示例:
def gaussian_map(shape, point, sigma=20):
a = np.arange(shape[0])
b = np.arange(shape[1])
x_grid, y_grid = np.meshgrid(a, b)
return 1 / (2 * np.pi * sigma * sigma) * np.exp(- ((x_grid - point[0]) * (x_grid - point[0]) + (y_grid - point[1]) * (y_grid - point[1])) / (2 * sigma * sigma))
想出了这个功能。好像有效果
import numpy as np
def build_gaussian_map(s, point, sigma=25):
x, y = point[0], point[1]
gmap = np.zeros(s)
for row in range(s[0]):
for col in range(s[1]):
gmap[row][col] = 1 / (2 * np.pi * sigma * sigma) * np.exp(-((x - row) * (x - row) + (y - col) * (y - col)) / (2 * sigma * sigma))
return gmap
def build_gaussian_map2(shape, point, sigma=25):
x, y = point[0], point[1]
row, col = np.indices(shape)
gmap = 1 / (2 * np.pi * sigma * sigma) * np.exp(-((x - row) * (x - row) + (y - col) * (y - col)) / (2 * sigma * sigma))
return gmap
def main():
s = (1000, 1000)
result1 = build_gaussian_map(s, (100, 100))
result2 = build_gaussian_map2(s, (100, 100))
assert np.all(result1 == result2)
main()
分析结果:
24 def main():
25 1 3.0 3.0 0.0 s = (1000, 1000)
26 1 6126705.0 6126705.0 98.2 result1 = build_gaussian_map(s, (100, 100))
27 1 105593.0 105593.0 1.7 result2 = build_gaussian_map2(s, (100, 100))
def build_gaussian_map(s, point, sigma=25):
x, y = point[0], point[1]
gmap = np.zeros(s)
for row in range(s[0]):
for col in range(s[1]):
gmap[row][col] = 1 / (2 * np.pi * sigma * sigma) * np.exp(-((x - row) * (x - row) + (y - col) * (y - col)) / (2 * sigma * sigma))
return gmap
s
- 二维数组形状
point
- 点坐标
我正在计算以图像的某个点为中心的距离高斯图point
。我可以使用矩阵运算以某种方式做到这一点吗?
结果图示例:
def gaussian_map(shape, point, sigma=20):
a = np.arange(shape[0])
b = np.arange(shape[1])
x_grid, y_grid = np.meshgrid(a, b)
return 1 / (2 * np.pi * sigma * sigma) * np.exp(- ((x_grid - point[0]) * (x_grid - point[0]) + (y_grid - point[1]) * (y_grid - point[1])) / (2 * sigma * sigma))
想出了这个功能。好像有效果
import numpy as np
def build_gaussian_map(s, point, sigma=25):
x, y = point[0], point[1]
gmap = np.zeros(s)
for row in range(s[0]):
for col in range(s[1]):
gmap[row][col] = 1 / (2 * np.pi * sigma * sigma) * np.exp(-((x - row) * (x - row) + (y - col) * (y - col)) / (2 * sigma * sigma))
return gmap
def build_gaussian_map2(shape, point, sigma=25):
x, y = point[0], point[1]
row, col = np.indices(shape)
gmap = 1 / (2 * np.pi * sigma * sigma) * np.exp(-((x - row) * (x - row) + (y - col) * (y - col)) / (2 * sigma * sigma))
return gmap
def main():
s = (1000, 1000)
result1 = build_gaussian_map(s, (100, 100))
result2 = build_gaussian_map2(s, (100, 100))
assert np.all(result1 == result2)
main()
分析结果:
24 def main():
25 1 3.0 3.0 0.0 s = (1000, 1000)
26 1 6126705.0 6126705.0 98.2 result1 = build_gaussian_map(s, (100, 100))
27 1 105593.0 105593.0 1.7 result2 = build_gaussian_map2(s, (100, 100))