使用 plotly 子图时绘制自定义误差线
Drawing custom error bars when using plotly subplots
这个问题与密切相关。我想使用数据框中两列的信息描述每个置信区间的上限和下限,为图形的子图中的每个条形图绘制置信区间。我尝试使用之前 post 的解决方案,但当有人想使用不同的颜色 and/or 不同的行来绘制图中的子图时,它似乎并不适用。
例如,以下代码不会生成正确的置信区间。例如,第二行第 3 个柱的 CI 应该从 11 变为 5:
import pandas as pd
import plotly.express as px
df = pd.DataFrame(
{"x": [0, 1, 2, 3, 0, 1, 2, 3],
"y": [6, 10, 2, 5, 8, 9, 10, 11],
"ci_upper": [8, 11, 2.5, 4, 9, 10, 11, 12],
"ci_lower": [5, 9, 1.5, 3, 7, 6, 5, 10],
"state": ['foo','foo','foo','foo','bar','bar','bar','bar'],
"color": ['0','0','1','1','0','0','1','1']}
)
fig = px.bar(df, x="x", y="y",facet_row='state',color='color').update_traces(
error_y={
"type": "data",
"symmetric": False,
"array": df["ci_upper"] - df["y"],
"arrayminus": df["y"] - df["ci_lower"],
}
)
fig.update_yaxes(dtick=1)
fig.show(renderer='png')
- 这是相同的技术,但解决方案需要考虑它的多条轨迹(本例中为 4 条)
- 在每个轨迹的
hovertemplate
中编码的是 facet 和 color。提取这些并将数据过滤到适当的行
- 然后像更简单的条件一样为误差条构建指令
import pandas as pd
import plotly.express as px
df = pd.DataFrame(
{
"x": [0, 1, 2, 3, 0, 1, 2, 3],
"y": [6, 10, 2, 5, 8, 9, 10, 11],
"ci_upper": [8, 11, 2.5, 4, 9, 10, 11, 12],
"ci_lower": [5, 9, 1.5, 3, 7, 6, 5, 10],
"state": ["foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],
"color": ["0", "0", "1", "1", "0", "0", "1", "1"],
}
)
fig = px.bar(df, x="x", y="y", facet_row="state", color="color")
fig.update_yaxes(dtick=1)
def error_facet(t):
# filter data frame based on contents of hovertemplate
d = df.query(
" and ".join(
[
f"{q.split('=')[0]}==\"{q.split('=')[1]}\""
for q in t.hovertemplate.split("<br>")[0:2]
]
)
)
t.update(
{
"error_y": {
"type": "data",
"symmetric": False,
"array": d["ci_upper"] - d["y"],
"arrayminus": d["y"] - d["ci_lower"],
}
}
)
fig.for_each_trace(error_facet)
fig
这个问题与
例如,以下代码不会生成正确的置信区间。例如,第二行第 3 个柱的 CI 应该从 11 变为 5:
import pandas as pd
import plotly.express as px
df = pd.DataFrame(
{"x": [0, 1, 2, 3, 0, 1, 2, 3],
"y": [6, 10, 2, 5, 8, 9, 10, 11],
"ci_upper": [8, 11, 2.5, 4, 9, 10, 11, 12],
"ci_lower": [5, 9, 1.5, 3, 7, 6, 5, 10],
"state": ['foo','foo','foo','foo','bar','bar','bar','bar'],
"color": ['0','0','1','1','0','0','1','1']}
)
fig = px.bar(df, x="x", y="y",facet_row='state',color='color').update_traces(
error_y={
"type": "data",
"symmetric": False,
"array": df["ci_upper"] - df["y"],
"arrayminus": df["y"] - df["ci_lower"],
}
)
fig.update_yaxes(dtick=1)
fig.show(renderer='png')
- 这是相同的技术,但解决方案需要考虑它的多条轨迹(本例中为 4 条)
- 在每个轨迹的
hovertemplate
中编码的是 facet 和 color。提取这些并将数据过滤到适当的行 - 然后像更简单的条件一样为误差条构建指令
import pandas as pd
import plotly.express as px
df = pd.DataFrame(
{
"x": [0, 1, 2, 3, 0, 1, 2, 3],
"y": [6, 10, 2, 5, 8, 9, 10, 11],
"ci_upper": [8, 11, 2.5, 4, 9, 10, 11, 12],
"ci_lower": [5, 9, 1.5, 3, 7, 6, 5, 10],
"state": ["foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],
"color": ["0", "0", "1", "1", "0", "0", "1", "1"],
}
)
fig = px.bar(df, x="x", y="y", facet_row="state", color="color")
fig.update_yaxes(dtick=1)
def error_facet(t):
# filter data frame based on contents of hovertemplate
d = df.query(
" and ".join(
[
f"{q.split('=')[0]}==\"{q.split('=')[1]}\""
for q in t.hovertemplate.split("<br>")[0:2]
]
)
)
t.update(
{
"error_y": {
"type": "data",
"symmetric": False,
"array": d["ci_upper"] - d["y"],
"arrayminus": d["y"] - d["ci_lower"],
}
}
)
fig.for_each_trace(error_facet)
fig