如何在不使用 numpy 的情况下计算 python 中的标准偏差?

How do I calculate standard deviation in python without using numpy?

我正在尝试在不使用 numpy 或除 math 之外的任何外部库的情况下计算 python 中的标准偏差。我想在编写算法方面做得更好,并且在提高我的 python 技能时,我只是把它作为一点“家庭作业”来做。我的目标是将 this formula 翻译成 python 但我没有得到正确的结果。

我正在使用一系列速度,其中 speeds = [86,87,88,86,87,85,86]

当我运行:

std_dev = numpy.std(speeds)
print(std_dev)

我得到:0.903507902905。但我不想依赖 numpy。所以...

我的实现如下:

import math

speeds = [86,87,88,86,87,85,86]

def get_mean(array):
    sum = 0
    for i in array:
        sum = sum + i
    mean = sum/len(array)
    return mean

def get_std_dev(array):
    # get mu
    mean = get_mean(array)
    # (x[i] - mu)**2
    for i in array:
        array = (i - mean) ** 2
        return array
    sum_sqr_diff = 0
    # get sigma
    for i in array:
        sum_sqr_diff = sum_sqr_diff + i
        return sum_sqr_diff
    # get mean of squared differences
    variance = 1/len(array)
    mean_sqr_diff = (variance * sum_sqr_diff)
    
    std_dev = math.sqrt(mean_sqr_diff)
    return std_dev

std_dev = get_std_dev(speeds)
print(std_dev)

现在当我运行:

std_dev = get_std_dev(speeds)
print(std_dev)

我得到:[0] 但我期待 0.903507902905

我在这里错过了什么?

这个。你需要去掉 for 循环中的 return

def get_std_dev(array):
    # get mu
    mean = get_mean(array)
    sum_sqr_diff = 0
    # get sigma
    for i in array:
        sum_sqr_diff = sum_sqr_diff + (i - mean)**2
    # get mean of squared differences
    variance = 1/len(array)
    mean_sqr_diff = (variance * sum_sqr_diff)
    
    std_dev = math.sqrt(mean_sqr_diff)
    return std_dev

代码中的一些问题,其中之一是 for 语句中的 return 值。你可以试试这个

def get_mean(array):
    return sum(array) / len(array)


def get_std_dev(array):
    n = len(array)
    mean = get_mean(array)
    squares_arr = []
    for item in array:
        squares_arr.append((item - mean) ** 2)
    return math.sqrt(sum(squares_arr) / n)

如果您不想使用 numpy 也可以尝试 statistics 包 python

import statistics

st_dev = statistics.pstdev(speeds)
print(st_dev)

或者,如果您仍然愿意使用自定义解决方案,那么我建议您使用以下使用列表理解的方式,而不是使用复杂的错误方法

import math

mean = sum(speeds) / len(speeds)
var = sum((l-mean)**2 for l in speeds) / len(speeds)
st_dev = math.sqrt(var)
print(st_dev)
speeds = [86,87,88,86,87,85,86]

# Calculate the mean of the values in your list
mean_speeds = sum(speeds) / len(speeds)

# Calculate the variance of the values in your list
# This is 1/N * sum((x - mean(X))^2)
var_speeds = sum((x - mean_speeds) ** 2 for x in speeds) / len(speeds)

# Take the square root of variance to get standard deviation
sd_speeds = var_speeds ** 0.5

>>> sd_speeds
0.9035079029052513

您的代码中的问题是在循环中间重用数组和 return

def get_std_dev(array):
    # get mu
    mean = get_mean(array)       <-- this is 86.4
    # (x[i] - mu)**2
    for i in array:
        array = (i - mean) ** 2  <-- this is almost 0
        return array             <-- this is the value returned

现在让我们看看您使用的算法。请注意,有两个常用的标准偏差公式。究竟哪一个是正确的,众说纷纭。

sqrt(sum((x - mean)^2) / n)

sqrt(sum((x - mean)^2) / (n -1))

对于较大的 n 值,使用第一个公式,因为 -1 是微不足道的。第一个公式可以简化为

sqrt(sum(x^2) /n - mean^2)

那么在 python 中你会怎么做呢?

def std_dev1(array):
   n = len(array)
   mean = sum(array) / n
   sumsq = sum(v * v for v in array)
   return (sumsq / n - mean * mean) ** 0.5