R:函数 mle 无法估计参数,错误代码为 100
R: the function mle failed to estimate the parameters with the error code 100
我正在使用 R 编程语言。
假设我有以下数据:
[1] 3631 1681 188 1065 733 643 2001 714 180 5147 2541 1048 643 1356 270 4396 358 4025 2004 1879 2342 4138 616 3161 4904 4320 215
[28] 79 5431 6551 97 889 6009 992 1487 336 840 612 769 680 5840 603 2581 4087 2241 129 2366 3856 980 1315 1050 7002 36 511
[55] 529 534 3037 1123 3889 4611 2577 3953 517 774 923 295 3152 524 714 5135 2529 1561 6105 4305 3633 1164 1663 791 11 225 940
[82] 172 4936 348 3410 3205 6827 3846 1809 6580 61 892 4525 523 595 3594 2245 999 343 856 106 1513 224 324 6725 323 2221 6455
[109] 3955 3580 532 775 3022 3049 1086 613 2866 4799 158 869 2510 149 1809 2772 5474 1096 5668 381 2428 428 308 932 1868 490 10163
[136] 12 671 1676 536 1940 686 1590 5749 1257 1389 3209 562 2504 129 1617 4058 521 2541 57 10747 1795 566 3290 372 5624 1229 252
[163] 257 1971 707 8036 2934 466 378 675 1551 2320 248 2871 4747 2987 6555 369 378 443 397 7653 1471 174 764 585 291 703 440
[190] 1808 83 3346 2384 2693 52 678 1320 7359 5367 1527 5789 300 101 1749 4265 4095 2134 326 326 1266 424 379 2275 206 1740 1593
[217] 1448 7488 1862 4304 436 2609 929 1583 325 5153 371 572 884 422 10905 2406 1873 4371 75 150 1538 1617 7756 630 691 200 1000
[244] 964 693 444 59 2059 1130 1276 1847 367 1533 875 2434 495 2087 1777 3709 335 156 280 2528 2401 1978 511 4999 2568 1398 2637
[271] 1668 2077 2993 69 3699 1667 2584 1915 679 4078 3014 555 2690 69 930 1026 324 991 973 566 459 2338 509 785 467 355 3186
[298] 5202 1122 5077 4945 1973 3029 377 4871 5481 284 801 444 1196 661 25 318 1137 1317 2841 143 1139 1662 1012 88 1764 1203 3618
[325] 713 8657 1274 2255 96 784 1687 62 1211 952 125 3260 879 430 3096 499 699 2395 1704 5818 2754 2012 6724 2891 959 1730 962
[352] 182 210 6051 902 3759 2211 206 1408 1472 883 773 2479 529 2932 1421 2111 1829 847 2761 1060 1805 1348 2049 2507 809 502 5877
[379] 1621 2254 1329 2752 1657 167 526 616 198 1648 1329 1643 360 1028 923 2819 1856 4562 2547 2517 6200 1704 10 1838 333 1643 1561
[406] 985 2763 4939 3116 855 1405 891 4503 210 4406 4836 33 97 4957 2202 1709 6048 123 1193 13006 271 781 2005 2970 352 1600 1862
[433] 2945 5234 502 2943 1666 167 4473 468 795 3175 1114 6 579 42 995 2705 1929 594 809 572 871 470 802 773 7028 430 139
[460] 215 1328 117 1324 1451 1455 157 1347 1049 2391 301 1587 602 1197 199 4400 1883 1971 1849 8050 7730 2527 4066 4443 54 838 16
[487] 584 261 579 729 226 292 1367 1608 749 1351 3710 2219 369 628
我把上面的数据放到一个名为“d”的数据框中,并将包含数据的变量称为“df”。我想尝试将几个概率分布拟合到此数据:
library(fitdistrplus)
library(patchwork)
library(ggplot2)
fg <- fitdist(d$df, "gamma")
fln <- fitdist(d$df, "lnorm")
fg <- fitdist(d$df, "gamma")
fw <- fitdist(d$df, "weibull")
par(mfrow = c(2, 2))
plot.legend <- c("Weibull", "lognormal", "gamma")
a <- denscomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
b <- qqcomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
c <- cdfcomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
d <- ppcomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
a+b+c+d
但是这个returns出现以下错误:
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data, gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(d$df, "gamma") :
the function mle failed to estimate the parameters,
with the error code 100
有谁知道我做错了什么?有人可以告诉我如何解决这个错误吗?
谢谢!
参考文献:
首先缩放数据 xx
。我们还缩短并修复了代码。 (输入 x
显示在末尾的注释中。它取自问题,但以可重现的形式显示。)
library(fitdistrplus)
library(patchwork)
library(ggplot2)
xx <- x/20000
fg <- fitdist(xx, "gamma")
fln <- fitdist(xx, "lnorm")
fw <- fitdist(xx, "weibull")
L <- list(fg, fln, fw)
a <- denscomp(L, plotstyle = "ggplot")
b <- qqcomp(L, plotstyle = "ggplot")
c <- cdfcomp(L, plotstyle = "ggplot")
d <- ppcomp(L, plotstyle = "ggplot")
a+b+c+d
备注
可重现形式的数据:
x <- c(3631, 1681, 188, 1065, 733, 643, 2001, 714, 180, 5147, 2541,
1048, 643, 1356, 270, 4396, 358, 4025, 2004, 1879, 2342, 4138,
616, 3161, 4904, 4320, 215, 79, 5431, 6551, 97, 889, 6009, 992,
1487, 336, 840, 612, 769, 680, 5840, 603, 2581, 4087, 2241, 129,
2366, 3856, 980, 1315, 1050, 7002, 36, 511, 529, 534, 3037, 1123,
3889, 4611, 2577, 3953, 517, 774, 923, 295, 3152, 524, 714, 5135,
2529, 1561, 6105, 4305, 3633, 1164, 1663, 791, 11, 225, 940,
172, 4936, 348, 3410, 3205, 6827, 3846, 1809, 6580, 61, 892,
4525, 523, 595, 3594, 2245, 999, 343, 856, 106, 1513, 224, 324,
6725, 323, 2221, 6455, 3955, 3580, 532, 775, 3022, 3049, 1086,
613, 2866, 4799, 158, 869, 2510, 149, 1809, 2772, 5474, 1096,
5668, 381, 2428, 428, 308, 932, 1868, 490, 10163, 12, 671, 1676,
536, 1940, 686, 1590, 5749, 1257, 1389, 3209, 562, 2504, 129,
1617, 4058, 521, 2541, 57, 10747, 1795, 566, 3290, 372, 5624,
1229, 252, 257, 1971, 707, 8036, 2934, 466, 378, 675, 1551, 2320,
248, 2871, 4747, 2987, 6555, 369, 378, 443, 397, 7653, 1471,
174, 764, 585, 291, 703, 440, 1808, 83, 3346, 2384, 2693, 52,
678, 1320, 7359, 5367, 1527, 5789, 300, 101, 1749, 4265, 4095,
2134, 326, 326, 1266, 424, 379, 2275, 206, 1740, 1593, 1448,
7488, 1862, 4304, 436, 2609, 929, 1583, 325, 5153, 371, 572,
884, 422, 10905, 2406, 1873, 4371, 75, 150, 1538, 1617, 7756,
630, 691, 200, 1000, 964, 693, 444, 59, 2059, 1130, 1276, 1847,
367, 1533, 875, 2434, 495, 2087, 1777, 3709, 335, 156, 280, 2528,
2401, 1978, 511, 4999, 2568, 1398, 2637, 1668, 2077, 2993, 69,
3699, 1667, 2584, 1915, 679, 4078, 3014, 555, 2690, 69, 930,
1026, 324, 991, 973, 566, 459, 2338, 509, 785, 467, 355, 3186,
5202, 1122, 5077, 4945, 1973, 3029, 377, 4871, 5481, 284, 801,
444, 1196, 661, 25, 318, 1137, 1317, 2841, 143, 1139, 1662, 1012,
88, 1764, 1203, 3618, 713, 8657, 1274, 2255, 96, 784, 1687, 62,
1211, 952, 125, 3260, 879, 430, 3096, 499, 699, 2395, 1704, 5818,
2754, 2012, 6724, 2891, 959, 1730, 962, 182, 210, 6051, 902,
3759, 2211, 206, 1408, 1472, 883, 773, 2479, 529, 2932, 1421,
2111, 1829, 847, 2761, 1060, 1805, 1348, 2049, 2507, 809, 502,
5877, 1621, 2254, 1329, 2752, 1657, 167, 526, 616, 198, 1648,
1329, 1643, 360, 1028, 923, 2819, 1856, 4562, 2547, 2517, 6200,
1704, 10, 1838, 333, 1643, 1561, 985, 2763, 4939, 3116, 855,
1405, 891, 4503, 210, 4406, 4836, 33, 97, 4957, 2202, 1709, 6048,
123, 1193, 13006, 271, 781, 2005, 2970, 352, 1600, 1862, 2945,
5234, 502, 2943, 1666, 167, 4473, 468, 795, 3175, 1114, 6, 579,
42, 995, 2705, 1929, 594, 809, 572, 871, 470, 802, 773, 7028,
430, 139, 215, 1328, 117, 1324, 1451, 1455, 157, 1347, 1049,
2391, 301, 1587, 602, 1197, 199, 4400, 1883, 1971, 1849, 8050,
7730, 2527, 4066, 4443, 54, 838, 16, 584, 261, 579, 729, 226,
292, 1367, 1608, 749, 1351, 3710, 2219, 369, 628)
我正在使用 R 编程语言。
假设我有以下数据:
[1] 3631 1681 188 1065 733 643 2001 714 180 5147 2541 1048 643 1356 270 4396 358 4025 2004 1879 2342 4138 616 3161 4904 4320 215
[28] 79 5431 6551 97 889 6009 992 1487 336 840 612 769 680 5840 603 2581 4087 2241 129 2366 3856 980 1315 1050 7002 36 511
[55] 529 534 3037 1123 3889 4611 2577 3953 517 774 923 295 3152 524 714 5135 2529 1561 6105 4305 3633 1164 1663 791 11 225 940
[82] 172 4936 348 3410 3205 6827 3846 1809 6580 61 892 4525 523 595 3594 2245 999 343 856 106 1513 224 324 6725 323 2221 6455
[109] 3955 3580 532 775 3022 3049 1086 613 2866 4799 158 869 2510 149 1809 2772 5474 1096 5668 381 2428 428 308 932 1868 490 10163
[136] 12 671 1676 536 1940 686 1590 5749 1257 1389 3209 562 2504 129 1617 4058 521 2541 57 10747 1795 566 3290 372 5624 1229 252
[163] 257 1971 707 8036 2934 466 378 675 1551 2320 248 2871 4747 2987 6555 369 378 443 397 7653 1471 174 764 585 291 703 440
[190] 1808 83 3346 2384 2693 52 678 1320 7359 5367 1527 5789 300 101 1749 4265 4095 2134 326 326 1266 424 379 2275 206 1740 1593
[217] 1448 7488 1862 4304 436 2609 929 1583 325 5153 371 572 884 422 10905 2406 1873 4371 75 150 1538 1617 7756 630 691 200 1000
[244] 964 693 444 59 2059 1130 1276 1847 367 1533 875 2434 495 2087 1777 3709 335 156 280 2528 2401 1978 511 4999 2568 1398 2637
[271] 1668 2077 2993 69 3699 1667 2584 1915 679 4078 3014 555 2690 69 930 1026 324 991 973 566 459 2338 509 785 467 355 3186
[298] 5202 1122 5077 4945 1973 3029 377 4871 5481 284 801 444 1196 661 25 318 1137 1317 2841 143 1139 1662 1012 88 1764 1203 3618
[325] 713 8657 1274 2255 96 784 1687 62 1211 952 125 3260 879 430 3096 499 699 2395 1704 5818 2754 2012 6724 2891 959 1730 962
[352] 182 210 6051 902 3759 2211 206 1408 1472 883 773 2479 529 2932 1421 2111 1829 847 2761 1060 1805 1348 2049 2507 809 502 5877
[379] 1621 2254 1329 2752 1657 167 526 616 198 1648 1329 1643 360 1028 923 2819 1856 4562 2547 2517 6200 1704 10 1838 333 1643 1561
[406] 985 2763 4939 3116 855 1405 891 4503 210 4406 4836 33 97 4957 2202 1709 6048 123 1193 13006 271 781 2005 2970 352 1600 1862
[433] 2945 5234 502 2943 1666 167 4473 468 795 3175 1114 6 579 42 995 2705 1929 594 809 572 871 470 802 773 7028 430 139
[460] 215 1328 117 1324 1451 1455 157 1347 1049 2391 301 1587 602 1197 199 4400 1883 1971 1849 8050 7730 2527 4066 4443 54 838 16
[487] 584 261 579 729 226 292 1367 1608 749 1351 3710 2219 369 628
我把上面的数据放到一个名为“d”的数据框中,并将包含数据的变量称为“df”。我想尝试将几个概率分布拟合到此数据:
library(fitdistrplus)
library(patchwork)
library(ggplot2)
fg <- fitdist(d$df, "gamma")
fln <- fitdist(d$df, "lnorm")
fg <- fitdist(d$df, "gamma")
fw <- fitdist(d$df, "weibull")
par(mfrow = c(2, 2))
plot.legend <- c("Weibull", "lognormal", "gamma")
a <- denscomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
b <- qqcomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
c <- cdfcomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
d <- ppcomp(list(fw, fln, fg), legendtext = plot.legend, plotstyle = "ggplot")
a+b+c+d
但是这个returns出现以下错误:
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data, gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(d$df, "gamma") :
the function mle failed to estimate the parameters,
with the error code 100
有谁知道我做错了什么?有人可以告诉我如何解决这个错误吗?
谢谢!
参考文献:
首先缩放数据 xx
。我们还缩短并修复了代码。 (输入 x
显示在末尾的注释中。它取自问题,但以可重现的形式显示。)
library(fitdistrplus)
library(patchwork)
library(ggplot2)
xx <- x/20000
fg <- fitdist(xx, "gamma")
fln <- fitdist(xx, "lnorm")
fw <- fitdist(xx, "weibull")
L <- list(fg, fln, fw)
a <- denscomp(L, plotstyle = "ggplot")
b <- qqcomp(L, plotstyle = "ggplot")
c <- cdfcomp(L, plotstyle = "ggplot")
d <- ppcomp(L, plotstyle = "ggplot")
a+b+c+d
备注
可重现形式的数据:
x <- c(3631, 1681, 188, 1065, 733, 643, 2001, 714, 180, 5147, 2541,
1048, 643, 1356, 270, 4396, 358, 4025, 2004, 1879, 2342, 4138,
616, 3161, 4904, 4320, 215, 79, 5431, 6551, 97, 889, 6009, 992,
1487, 336, 840, 612, 769, 680, 5840, 603, 2581, 4087, 2241, 129,
2366, 3856, 980, 1315, 1050, 7002, 36, 511, 529, 534, 3037, 1123,
3889, 4611, 2577, 3953, 517, 774, 923, 295, 3152, 524, 714, 5135,
2529, 1561, 6105, 4305, 3633, 1164, 1663, 791, 11, 225, 940,
172, 4936, 348, 3410, 3205, 6827, 3846, 1809, 6580, 61, 892,
4525, 523, 595, 3594, 2245, 999, 343, 856, 106, 1513, 224, 324,
6725, 323, 2221, 6455, 3955, 3580, 532, 775, 3022, 3049, 1086,
613, 2866, 4799, 158, 869, 2510, 149, 1809, 2772, 5474, 1096,
5668, 381, 2428, 428, 308, 932, 1868, 490, 10163, 12, 671, 1676,
536, 1940, 686, 1590, 5749, 1257, 1389, 3209, 562, 2504, 129,
1617, 4058, 521, 2541, 57, 10747, 1795, 566, 3290, 372, 5624,
1229, 252, 257, 1971, 707, 8036, 2934, 466, 378, 675, 1551, 2320,
248, 2871, 4747, 2987, 6555, 369, 378, 443, 397, 7653, 1471,
174, 764, 585, 291, 703, 440, 1808, 83, 3346, 2384, 2693, 52,
678, 1320, 7359, 5367, 1527, 5789, 300, 101, 1749, 4265, 4095,
2134, 326, 326, 1266, 424, 379, 2275, 206, 1740, 1593, 1448,
7488, 1862, 4304, 436, 2609, 929, 1583, 325, 5153, 371, 572,
884, 422, 10905, 2406, 1873, 4371, 75, 150, 1538, 1617, 7756,
630, 691, 200, 1000, 964, 693, 444, 59, 2059, 1130, 1276, 1847,
367, 1533, 875, 2434, 495, 2087, 1777, 3709, 335, 156, 280, 2528,
2401, 1978, 511, 4999, 2568, 1398, 2637, 1668, 2077, 2993, 69,
3699, 1667, 2584, 1915, 679, 4078, 3014, 555, 2690, 69, 930,
1026, 324, 991, 973, 566, 459, 2338, 509, 785, 467, 355, 3186,
5202, 1122, 5077, 4945, 1973, 3029, 377, 4871, 5481, 284, 801,
444, 1196, 661, 25, 318, 1137, 1317, 2841, 143, 1139, 1662, 1012,
88, 1764, 1203, 3618, 713, 8657, 1274, 2255, 96, 784, 1687, 62,
1211, 952, 125, 3260, 879, 430, 3096, 499, 699, 2395, 1704, 5818,
2754, 2012, 6724, 2891, 959, 1730, 962, 182, 210, 6051, 902,
3759, 2211, 206, 1408, 1472, 883, 773, 2479, 529, 2932, 1421,
2111, 1829, 847, 2761, 1060, 1805, 1348, 2049, 2507, 809, 502,
5877, 1621, 2254, 1329, 2752, 1657, 167, 526, 616, 198, 1648,
1329, 1643, 360, 1028, 923, 2819, 1856, 4562, 2547, 2517, 6200,
1704, 10, 1838, 333, 1643, 1561, 985, 2763, 4939, 3116, 855,
1405, 891, 4503, 210, 4406, 4836, 33, 97, 4957, 2202, 1709, 6048,
123, 1193, 13006, 271, 781, 2005, 2970, 352, 1600, 1862, 2945,
5234, 502, 2943, 1666, 167, 4473, 468, 795, 3175, 1114, 6, 579,
42, 995, 2705, 1929, 594, 809, 572, 871, 470, 802, 773, 7028,
430, 139, 215, 1328, 117, 1324, 1451, 1455, 157, 1347, 1049,
2391, 301, 1587, 602, 1197, 199, 4400, 1883, 1971, 1849, 8050,
7730, 2527, 4066, 4443, 54, 838, 16, 584, 261, 579, 729, 226,
292, 1367, 1608, 749, 1351, 3710, 2219, 369, 628)