foobar 失败测试用例 - a* 带有易碎墙
foobar failing test case - a* with breakable wall
正在处理 google foo-bar 挑战,我被困在一个失败的测试用例上(这是一个隐藏的测试用例 - 所以我无法直接看到问题所在)
基本上,该测试是一个具有单个易碎墙的迷宫解算器的实现。
我正在进行修改后的 a* 搜索 - 为包含断墙的路径使用布尔标志,这样当它到达第二堵墙时(沿着有断墙的路径)它会跳过该路径.
我已经检查了这段代码,但我似乎看不到错误(即使有错误 - 在这一点上我几乎确信测试用例有某种错误)
参数:
给定一个高度为 x,y 的网格,其中填充了 0 或 1,分别代表空间和墙壁:如果您可以恰好打破 1 堵墙(如果需要),请找到最短路径
一个例子:
[
[0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,1,0,0,1,0,1,1,0]
[1,1,1,1,1,0,1,0,1,0,1]
[0,0,0,0,0,0,0,0,1,1,0]
]
22 is the shortest path breaking 1 wall.
我想要一个正确方向的指针:我觉得我所缺少的一切都是微不足道的。
下面是代码。
from math import sqrt, ceil
cardinal_moves=[(0,1), (0,-1), (1,0), (-1,0)]
class Node:
def __init__(self, pos ,parent =None):
self.parent = parent
self.pos = pos
self.g = 0
self.h = 0
self.f = 0
self.wall_broken = False
def __eq__(self, other):
return ((self.pos == other.pos) and (self.wall_broken == other.wall_broken))
def update_heuristic(self,parent,end):
self.g = parent.g + 1
self.h = ceil(sqrt((end.pos[0] - self.pos[0])**2 + (end.pos[1] - self.pos[1])**2))
self.f = self.g + self.h
def not_inside_maze(pos,maze):
return pos[0] < 0 or pos[0] >= len(maze) or pos[1] < 0 or pos[1] >= len(maze[0])
def astar_with_1_breakable_wall(maze):
start_pos = (0,0)
end_pos = (len(maze)-1, len(maze[0])-1)
start = Node(start_pos)
end = Node(end_pos)
not_visted = []
visited = []
not_visted.append(start)
while not_visted:
current_node = not_visted[0]
for node in not_visted:
if current_node.f > node.f:
current_node = node
not_visted.remove(current_node)
visited.append(current_node)
if current_node.pos == end.pos:
temp = current_node
path = []
while temp:
path.append(temp.pos)
temp = temp.parent
return path[::-1]
children = []
for position in cardinal_moves:
new_pos = (current_node.pos[0] + position[0], current_node.pos[1] + position[1])
if not_inside_maze(new_pos,maze):
continue
if maze[new_pos[0]][new_pos[1]] == 1:
if current_node.wall_broken:
continue
else:
check = Node(new_pos,current_node)
check.wall_broken = True
already_visited = False
for node in visited:
if check == node:
already_visited = True
break
if not already_visited:
children.append(check)
continue
already_visited = False
check = Node(new_pos,current_node)
check.wall_broken = current_node.wall_broken
for node in visited:
if check == node:
already_visited = True
break
if already_visited:
continue
children.append(check)
for child in children:
child.update_heuristic(current_node,end)
for open_node in not_visted:
if open_node == child:
if open_node.g > child.g:
idx = not_visted.index(open_node)
not_visted[idx] = child
continue
else:
continue
not_visted.append(child)
def shortest_path(maze):
if (astar_with_1_breakable_wall(maze)):
return len(astar_with_1_breakable_wall(maze))
else:
return -1
但是我在我的机器上所做的每一次检查都表明这是正确的:
#imports added
import sys
#then added this below the maze solver
test = [
[0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,1,0,0,1,0,1,1,0],
[1,1,1,1,1,0,1,0,1,0,1],
[0,0,0,0,0,0,0,0,1,1,0],
]
test2=[
[0,1,0,0,0,0,1,0,0,0,0],
[0,1,0,1,1,0,1,0,1,0,0],
[0,0,0,1,0,0,1,0,1,0,0],
[1,1,1,1,0,1,1,0,1,0,1],
[0,0,0,0,0,0,0,0,1,0,1],
]
print("first test")
print(shortest_path(test))
print("second test")
print(shortest_path(test))
#both of these tests give the correct result
def generate_matrix(h,w,n):
sequence = "{0:b}".format(n).zfill(h*w)
maze =[]
if(sequence[0]=="1" or sequence[len(sequence)-1]=="1"):
return -1
i=0
for y in range(h):
maze.append([])
for x in range(w):
maze[y].append(int(sequence[i]))
i=i+1
return(maze)
for i in range(20):
for j in range(20):
if(i < 6 or j <6):
continue
shortest=j+i
for k in range(2**(i*j)):
if not k%2==0:
continue
if k> 2**(i*j-1):
continue
maze = generate_matrix(i,j,k)
if(not maze == -1):
path = astar_with_1_breakable_wall(maze)
res = shortest_path(maze)
if(res > shortest):
print("\n",res, "shortest was ", shortest)
for index,line in enumerate(maze):
for indx,cell in enumerate(line):
if ((index,indx) in path):
print("3[94m"+str(cell),end="")
else:
print("3[92m"+str(cell),end="")
print("\n")
for point in path:
print(point ," ", end="")
print("\n\n")
else:
sys.stdout.write("\r")
上面的代码使每个矩阵成为可能,如果路径比基本情况长,则打印(突出显示路径)矩阵。
每个结果都如我所料 - 返回正确的最短路径...我还没有发现为什么只有第三个测试用例失败的问题...
答案显然是 python 2.7.13 特有的——需要一些调试才能弄清楚,但 not_visited.remove(current_node) 是在某些情况下失败了。
正在处理 google foo-bar 挑战,我被困在一个失败的测试用例上(这是一个隐藏的测试用例 - 所以我无法直接看到问题所在)
基本上,该测试是一个具有单个易碎墙的迷宫解算器的实现。
我正在进行修改后的 a* 搜索 - 为包含断墙的路径使用布尔标志,这样当它到达第二堵墙时(沿着有断墙的路径)它会跳过该路径.
我已经检查了这段代码,但我似乎看不到错误(即使有错误 - 在这一点上我几乎确信测试用例有某种错误)
参数:
给定一个高度为 x,y 的网格,其中填充了 0 或 1,分别代表空间和墙壁:如果您可以恰好打破 1 堵墙(如果需要),请找到最短路径
一个例子:
[
[0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,1,0,0,1,0,1,1,0]
[1,1,1,1,1,0,1,0,1,0,1]
[0,0,0,0,0,0,0,0,1,1,0]
]
22 is the shortest path breaking 1 wall.
我想要一个正确方向的指针:我觉得我所缺少的一切都是微不足道的。
下面是代码。
from math import sqrt, ceil
cardinal_moves=[(0,1), (0,-1), (1,0), (-1,0)]
class Node:
def __init__(self, pos ,parent =None):
self.parent = parent
self.pos = pos
self.g = 0
self.h = 0
self.f = 0
self.wall_broken = False
def __eq__(self, other):
return ((self.pos == other.pos) and (self.wall_broken == other.wall_broken))
def update_heuristic(self,parent,end):
self.g = parent.g + 1
self.h = ceil(sqrt((end.pos[0] - self.pos[0])**2 + (end.pos[1] - self.pos[1])**2))
self.f = self.g + self.h
def not_inside_maze(pos,maze):
return pos[0] < 0 or pos[0] >= len(maze) or pos[1] < 0 or pos[1] >= len(maze[0])
def astar_with_1_breakable_wall(maze):
start_pos = (0,0)
end_pos = (len(maze)-1, len(maze[0])-1)
start = Node(start_pos)
end = Node(end_pos)
not_visted = []
visited = []
not_visted.append(start)
while not_visted:
current_node = not_visted[0]
for node in not_visted:
if current_node.f > node.f:
current_node = node
not_visted.remove(current_node)
visited.append(current_node)
if current_node.pos == end.pos:
temp = current_node
path = []
while temp:
path.append(temp.pos)
temp = temp.parent
return path[::-1]
children = []
for position in cardinal_moves:
new_pos = (current_node.pos[0] + position[0], current_node.pos[1] + position[1])
if not_inside_maze(new_pos,maze):
continue
if maze[new_pos[0]][new_pos[1]] == 1:
if current_node.wall_broken:
continue
else:
check = Node(new_pos,current_node)
check.wall_broken = True
already_visited = False
for node in visited:
if check == node:
already_visited = True
break
if not already_visited:
children.append(check)
continue
already_visited = False
check = Node(new_pos,current_node)
check.wall_broken = current_node.wall_broken
for node in visited:
if check == node:
already_visited = True
break
if already_visited:
continue
children.append(check)
for child in children:
child.update_heuristic(current_node,end)
for open_node in not_visted:
if open_node == child:
if open_node.g > child.g:
idx = not_visted.index(open_node)
not_visted[idx] = child
continue
else:
continue
not_visted.append(child)
def shortest_path(maze):
if (astar_with_1_breakable_wall(maze)):
return len(astar_with_1_breakable_wall(maze))
else:
return -1
但是我在我的机器上所做的每一次检查都表明这是正确的:
#imports added
import sys
#then added this below the maze solver
test = [
[0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,1,0,0,1,0,1,1,0],
[1,1,1,1,1,0,1,0,1,0,1],
[0,0,0,0,0,0,0,0,1,1,0],
]
test2=[
[0,1,0,0,0,0,1,0,0,0,0],
[0,1,0,1,1,0,1,0,1,0,0],
[0,0,0,1,0,0,1,0,1,0,0],
[1,1,1,1,0,1,1,0,1,0,1],
[0,0,0,0,0,0,0,0,1,0,1],
]
print("first test")
print(shortest_path(test))
print("second test")
print(shortest_path(test))
#both of these tests give the correct result
def generate_matrix(h,w,n):
sequence = "{0:b}".format(n).zfill(h*w)
maze =[]
if(sequence[0]=="1" or sequence[len(sequence)-1]=="1"):
return -1
i=0
for y in range(h):
maze.append([])
for x in range(w):
maze[y].append(int(sequence[i]))
i=i+1
return(maze)
for i in range(20):
for j in range(20):
if(i < 6 or j <6):
continue
shortest=j+i
for k in range(2**(i*j)):
if not k%2==0:
continue
if k> 2**(i*j-1):
continue
maze = generate_matrix(i,j,k)
if(not maze == -1):
path = astar_with_1_breakable_wall(maze)
res = shortest_path(maze)
if(res > shortest):
print("\n",res, "shortest was ", shortest)
for index,line in enumerate(maze):
for indx,cell in enumerate(line):
if ((index,indx) in path):
print("3[94m"+str(cell),end="")
else:
print("3[92m"+str(cell),end="")
print("\n")
for point in path:
print(point ," ", end="")
print("\n\n")
else:
sys.stdout.write("\r")
上面的代码使每个矩阵成为可能,如果路径比基本情况长,则打印(突出显示路径)矩阵。
每个结果都如我所料 - 返回正确的最短路径...我还没有发现为什么只有第三个测试用例失败的问题...
答案显然是 python 2.7.13 特有的——需要一些调试才能弄清楚,但 not_visited.remove(current_node) 是在某些情况下失败了。