尝试使用 OneHotEncoder 然后使用 make_column_transformer 规范化值后出现 ValueError

ValueError after attempting to use OneHotEncoder and then normalize values with make_column_transformer

所以我试图将我的数据的时间戳从 Unix 时间戳转换为更易读的日期格式。我创建了一个简单的 Java 程序来执行此操作并写入 .csv 文件,一切顺利。我尝试将它用于我的模型,方法是将其一次性编码为数字,然后将所有内容都转换为规范化数据。然而,在我尝试单热编码(我不确定它是否有效)之后,我使用 make_column_transformer 的规范化过程失败了。

# model 4
# next model
import tensorflow as tf
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from tensorflow.keras import layers
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from sklearn.model_selection import train_test_split

np.set_printoptions(precision=3, suppress=True)
btc_data = pd.read_csv(
    "/content/drive/MyDrive/Science Fair/output2.csv",
    names=["Time", "Open"])

X_btc = btc_data[["Time"]]
y_btc = btc_data["Open"]

enc = OneHotEncoder(handle_unknown="ignore")
enc.fit(X_btc)

X_btc = enc.transform(X_btc)

print(X_btc)

X_train, X_test, y_train, y_test = train_test_split(X_btc, y_btc, test_size=0.2, random_state=62)

ct = make_column_transformer(
    (MinMaxScaler(), ["Time"])
)

ct.fit(X_train)
X_train_normal = ct.transform(X_train)
X_test_normal = ct.transform(X_test)

callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)

btc_model_4 = tf.keras.Sequential([
  layers.Dense(100, activation="relu"),
  layers.Dense(100, activation="relu"),
  layers.Dense(100, activation="relu"),
  layers.Dense(100, activation="relu"),
  layers.Dense(100, activation="relu"),
  layers.Dense(100, activation="relu"),
  layers.Dense(1, activation="linear")
])

btc_model_4.compile(loss = tf.losses.MeanSquaredError(),
                      optimizer = tf.optimizers.Adam())

history = btc_model_4.fit(X_train_normal, y_train, batch_size=8192, epochs=100, callbacks=[callback])

btc_model_4.evaluate(X_test_normal, y_test, batch_size=8192)

y_pred = btc_model_4.predict(X_test_normal)

btc_model_4.save("btc_model_4")
btc_model_4.save("btc_model_4.h5")

# plot model
def plot_evaluations(train_data=X_train_normal,
                     train_labels=y_train,
                     test_data=X_test_normal,
                     test_labels=y_test,
                     predictions=y_pred):
  print(test_data.shape)
  print(predictions.shape)

  plt.figure(figsize=(100, 15))
  plt.scatter(train_data, train_labels, c='b', label="Training")
  plt.scatter(test_data, test_labels, c='g', label="Testing")
  plt.scatter(test_data, predictions, c='r', label="Results")
  plt.legend()

plot_evaluations()

# plot loss curve
pd.DataFrame(history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")

我的正常数据格式是这样的:

2015-12-05 12:52:00,377.48
2015-12-05 12:53:00,377.5
2015-12-05 12:54:00,377.5
2015-12-05 12:56:00,377.5
2015-12-05 12:57:00,377.5
2015-12-05 12:58:00,377.5
2015-12-05 12:59:00,377.5
2015-12-05 13:00:00,377.5
2015-12-05 13:01:00,377.79
2015-12-05 13:02:00,377.5
2015-12-05 13:03:00,377.79
2015-12-05 13:05:00,377.74
2015-12-05 13:06:00,377.79
2015-12-05 13:07:00,377.64
2015-12-05 13:08:00,377.79
2015-12-05 13:10:00,377.77
2015-12-05 13:11:00,377.7
2015-12-05 13:12:00,377.77
2015-12-05 13:13:00,377.77
2015-12-05 13:14:00,377.79
2015-12-05 13:15:00,377.72
2015-12-05 13:16:00,377.5
2015-12-05 13:17:00,377.49
2015-12-05 13:18:00,377.5
2015-12-05 13:19:00,377.5
2015-12-05 13:20:00,377.8
2015-12-05 13:21:00,377.84
2015-12-05 13:22:00,378.29
2015-12-05 13:23:00,378.3
2015-12-05 13:24:00,378.3
2015-12-05 13:25:00,378.33
2015-12-05 13:26:00,378.33
2015-12-05 13:28:00,378.31
2015-12-05 13:29:00,378.68

第一个是日期,逗号后的第二个值是当时BTC的价格。现在在“one-hot encoding”之后,我添加了一个 print 语句来打印那些 X 值的值,并给出了以下值:

  (0, 0)    1.0
  (1, 1)    1.0
  (2, 2)    1.0
  (3, 3)    1.0
  (4, 4)    1.0
  (5, 5)    1.0
  (6, 6)    1.0
  (7, 7)    1.0
  (8, 8)    1.0
  (9, 9)    1.0
  (10, 10)  1.0
  (11, 11)  1.0
  (12, 12)  1.0
  (13, 13)  1.0
  (14, 14)  1.0
  (15, 15)  1.0
  (16, 16)  1.0
  (17, 17)  1.0
  (18, 18)  1.0
  (19, 19)  1.0
  (20, 20)  1.0
  (21, 21)  1.0
  (22, 22)  1.0
  (23, 23)  1.0
  (24, 24)  1.0
  : :
  (2526096, 2526096)    1.0
  (2526097, 2526097)    1.0
  (2526098, 2526098)    1.0
  (2526099, 2526099)    1.0
  (2526100, 2526100)    1.0
  (2526101, 2526101)    1.0
  (2526102, 2526102)    1.0
  (2526103, 2526103)    1.0
  (2526104, 2526104)    1.0
  (2526105, 2526105)    1.0
  (2526106, 2526106)    1.0
  (2526107, 2526107)    1.0
  (2526108, 2526108)    1.0
  (2526109, 2526109)    1.0
  (2526110, 2526110)    1.0
  (2526111, 2526111)    1.0
  (2526112, 2526112)    1.0
  (2526113, 2526113)    1.0
  (2526114, 2526114)    1.0
  (2526115, 2526115)    1.0
  (2526116, 2526116)    1.0
  (2526117, 2526117)    1.0
  (2526118, 2526118)    1.0
  (2526119, 2526119)    1.0
  (2526120, 2526120)    1.0

进行归一化拟合后,我收到以下错误:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/__init__.py in _get_column_indices(X, key)
    408         try:
--> 409             all_columns = X.columns
    410         except AttributeError:

5 frames
AttributeError: columns not found

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/__init__.py in _get_column_indices(X, key)
    410         except AttributeError:
    411             raise ValueError(
--> 412                 "Specifying the columns using strings is only "
    413                 "supported for pandas DataFrames"
    414             )

ValueError: Specifying the columns using strings is only supported for pandas DataFrames

我的one-hot编码正确吗?这样做的合适方法是什么?我应该在规范化过程中直接实现 one-hot 编码器吗?

使用 OneHotEncoder 不是去这里的方法,最好从列 time 中提取特征作为单独的特征,例如年份、月、日、小时、分钟等...并将这些列作为模型的输入。

btc_data['Year'] = btc_data['Date'].astype('datetime64[ns]').dt.year
btc_data['Month'] = btc_data['Date'].astype('datetime64[ns]').dt.month
btc_data['Day'] = btc_data['Date'].astype('datetime64[ns]').dt.day
    

这里的问题来自 oneHotEncoder,它正在返回一个 scipy 稀疏矩阵 并乘坐“时间”列因此要更正此问题,您必须将输出重新转换为 pandas 数据帧 并添加“时间”列。

enc = OneHotEncoder(handle_unknown="ignore")
enc.fit(X_btc)
X_btc = enc.transform(X_btc)
X_btc = pd.DataFrame(X_btc.todense())
X_btc["Time"] = btc_data["Time"]

解决 countournate 内存问题 的一种方法是:

  1. 生成两个具有相同random_state的索引,一个用于pandas数据帧,一个用于scipy稀疏矩阵
X_train, X_test, y_train, y_test = train_test_split(X_btc, y_btc, test_size=0.2, random_state=62)
X_train_pd, X_test_pd, y_train_pd, y_test_pd = train_test_split(btc_data, y_btc, test_size=0.2, random_state=62)
  1. MinMaxScaler() 使用 pandas 数据框。
   ct = make_column_transformer((MinMaxScaler(), ["Time"]))
   ct.fit(X_train_pd)
   result_train = ct.transform(X_train_pd)
   result_test = ct.transform(X_test_pd)
  1. 在训练和测试阶段使用生成器加载数据(这将解决内存问题)并在生成器中包含缩放时间。
def nn_batch_generator(X_data, y_data, scaled, batch_size):
   samples_per_epoch = X_data.shape[0]
   number_of_batches = samples_per_epoch / batch_size
   counter = 0
   index = np.arange(np.shape(y_data)[0])
   while True:
       index_batch = index[batch_size * counter:batch_size * (counter + 1)]
       scaled_array = scaled[index_batch]
       X_batch = X_data[index_batch, :].todense()
       y_batch = y_data.iloc[index_batch]
       counter += 1
       yield np.array(np.hstack((np.array(X_batch), scaled_array))), np.array(y_batch)
       if (counter > number_of_batches):
           counter = 0


def nn_batch_generator_test(X_data, scaled, batch_size):
   samples_per_epoch = X_data.shape[0]
   number_of_batches = samples_per_epoch / batch_size
   counter = 0
   index = np.arange(np.shape(X_data)[0])
   while True:
       index_batch = index[batch_size * counter:batch_size * (counter + 1)]
       scaled_array = scaled[index_batch]
       X_batch = X_data[index_batch, :].todense()
       counter += 1
       yield np.hstack((X_batch, scaled_array))
       if (counter > number_of_batches):
           counter = 0

最终拟合模型


history = btc_model_4.fit(nn_batch_generator(X_train, y_train, scaled=result_train, batch_size=2), steps_per_epoch=#Todetermine,
                         batch_size=2, epochs=10,
                         callbacks=[callback])

btc_model_4.evaluate(nn_batch_generator(X_test, y_test, scaled=result_test, batch_size=2), batch_size=2, steps=#Todetermine)
y_pred = btc_model_4.predict(nn_batch_generator_test(X_test, scaled=result_test, batch_size=2), steps=#Todetermine)

只是为了添加到现有答案中,如果您从 Scipy 压缩稀疏行 (CSR) 矩阵转换为 Pandas DataFrame 并将时间戳字符串转换为 datetime64,则模型将开始训练 - 至少在提供的小子集上:

    enc = OneHotEncoder(handle_unknown="ignore")
    enc.fit(X_btc)
    X_btc = enc.transform(X_btc)
    X_btc = pd.DataFrame(X_btc.todense())
    X_btc["Time"] = btc_data["Time"]
    X_btc['Time'] = X_btc['Time'].astype('datetime64[ns]')

根据您对内存密集度的评论,这就是您处理问题的本质 - 通过使用时间戳进行一次热编码,如果您的特征矩阵具有 n 行,每行包含一个不同的值(我们在处理时间戳时会期望这一点),应用单热编码将生成一个 n x n 矩阵,这可能是巨大的。为了验证,如果您使用测试数据单步执行或打印出在此过程中生成的中间矩阵,您将观察到 X_btc 启动了一个 34 x 1 矩阵,并且在应用编码器 (X_btc = enc.transform(X_btc)) 后变成 34 x 34 矩阵。

我不确定这个问题的结局 objective 是什么,但是如果您想继续使用这种方法,您可能希望以更细粒度的方式对样本进行分类 - 例如,当一个热编码时,将每个时间戳处理到毫秒,因为它是自己独特的类别,t运行适应小时,然后应用一个热编码:

    X_btc['Time'] = X_btc['Time'].astype('datetime64[h]')  # convert to units to hours before one hot encoding
    enc = OneHotEncoder(handle_unknown="ignore")
    enc.fit(X_btc)
    X_btc = enc.transform(X_btc)
    X_btc = pd.DataFrame(X_btc.todense())
    X_btc["Time"] = btc_data["Time"].astype('datetime64[ns]')  # Use 'ns' here to retain the full timestamp information

在提供的示例数据中,由于我们有 2 个不同的小时(12 和 13),当应用一种热编码时,我们现在只有 2 个不同的 类,而不是 34 个。这应该可以减轻内存占用问题,因为与此数据的总记录相比,您的小时数应该少得多。

沿着同样的思路,您可以从时间戳中提取小时(也可能是分钟)到一个热编码中,而不是将 t运行 设置为小时:

    X_btc['Time'] = str(X_btc['Time'].astype('datetime64[ns]').dt.hour) 
    #  + ":" + str(X_btc['Time'].astype('datetime64[ns]').dt.minute) # UNCOMMENT TO INCLUDE minute

这种方法的好处是,如果你保存了编码器,你就可以在被引入系统的新数据上重用这个逻辑,而在当前对训练数据进行编码的方法中,你将无法运行 训练集中不包含日期的数据流上的模型。它们将属于一个新类别,需要重新安装编码器和模型。

如果您只使用一个小时,这意味着您将从一个热编码器中获得 24 个不同的 类。如果您也使用分钟,您将有 24 * 60 = 1440 个不同的 类(这应该仍然远远少于您正在处理的记录数)。