通过按字母顺序对一行中的某些字段进行排序来重塑 R 中的数据框
Reshaping a dataframe in R by sorting just some fields in a row alphabetically
我在 RStudio 中有几个大型数据帧,它们具有以下结构:
Original data structure
structure(list(CHROM = c("scaffold1000|size223437", "scaffold1000|size223437",
"scaffold1000|size223437", "scaffold1000|size223437"), POS = c(666,
1332, 3445, 4336), REF = c("A", "TA", "CTTGA", "GCTA"), RO = c(20,
14, 9, 25), ALT_1 = c("GAT", "TGC", "AGC", "T"), ALT_2 = c("CAG",
"TGA", "CGC", NA), ALT_3 = c("G", NA, "TGA", NA), ALT_4 = c("AGT",
NA, NA, NA), AO_1 = c(13, 4, 67, 120), AO_2 = c(12, 5, 34, NA
), AO_3 = c(6, NA, 18, NA), AO_4 = c(101, NA, NA, NA), AOF_1 = c(8.55263157894737,
17.3913043478261, 52.34375, 82.7586206896552), AOF_2 = c(7.89473684210526,
21.7391304347826, 26.5625, NA), AOF_3 = c(3.94736842105263, NA,
14.0625, NA), AOF_4 = c(66.4473684210526, NA, NA, NA)), class = "data.frame", row.names = c(NA,
-4L))
但为了进行分析,我需要它看起来像这样:
Desired output
structure(list(CHROM = c("scaffold1000|size223437", "scaffold1000|size223437",
"scaffold1000|size223437", "scaffold1000|size223437"), POS = c(666,
1332, 3445, 4336), REF = c("A", "TA", "CTTGA", "GCTA"), RO = c(20,
14, 9, 25), ALT_1 = c("AGT", "TGA", "AGC", "T"), ALT_2 = c("CAG",
"TGC", "CGC", NA), ALT_3 = c("G", NA, "TGA", NA), ALT_4 = c("GAT",
NA, NA, NA), AO_1 = c(101, 5, 67, 120), AO_2 = c(12, 4, 34, NA
), AO_3 = c(6, NA, 18, NA), AO_4 = c(13, NA, NA, NA), AOF_1 = c(66.4473684210526,
21.7391304347826, 52.34375, 82.7586206896552), AOF_2 = c(7.89473684210526,
17.3913043478261, 26.5625, NA), AOF_3 = c(3.94736842105263, NA,
14.0625, NA), AOF_4 = c(8.55263157894737, NA, NA, NA)), class = "data.frame", row.names = c(NA,
-4L))
所以我想做的是以某种方式重新排列行的内容,即 ALT_1、ALT_2、ALT_3、ALT_4 列是按字母排序的,但同时我还需要重新排列AO和AOF对应的列,让值仍然匹配。
(AO_1 的值仍应与 ALT_1 中的序列匹配。
因此,如果 ALT_1 在排序后的数据框中变为 ALT_2,则 AO_1 也应变为 AO_2)
到目前为止我尝试过但没有奏效的方法:
将 ALT_1、AO_1、AOF_1 的值全部粘贴到一个字段中,所以我将它们与
放在一起
if (is.na(X[i,6]) == FALSE) {
X[i,6] <- paste(X[i,6],X[i,10],X[i,14],sep=" ")
}
}
然后我想提取每一行作为一个向量来对值进行排序并将其放回数据框中,但我没能做到这一点。
所以问题是我如何订购数据框以获得所需的输出?
(我需要将其应用于 32 个数据帧,每个数据帧都具有 >100.000 个值)
这里有一个data.table
方法
library(data.table)
# Set to data.table format
setDT(mydata)
# Melt to long format
DT.melt <- melt(mydata, measure.vars = patterns(ALT = "^ALT_", AO = "^AO_", AOF = "^AOF_"))
# order by groups, na's at the end
setorderv(DT.melt, cols = c("CHROM", "POS", "ALT"), na.last = TRUE)
# cast to wide again, use rowid() for numbering
dcast(DT.melt, CHROM + POS + REF + RO ~ rowid(REF), value.var = list("ALT", "AO", "AOF"))
# CHROM POS REF RO ALT_1 ALT_2 ALT_3 ALT_4 AO_1 AO_2 AO_3 AO_4 AOF_1 AOF_2 AOF_3 AOF_4
# 1: scaffold1000|size223437 666 A 20 AGT CAG G GAT 101 12 6 13 66.44737 7.894737 3.947368 8.552632
# 2: scaffold1000|size223437 1332 TA 14 TGA TGC <NA> <NA> 5 4 NA NA 21.73913 17.391304 NA NA
# 3: scaffold1000|size223437 3445 CTTGA 9 AGC CGC TGA <NA> 67 34 18 NA 52.34375 26.562500 14.062500 NA
# 4: scaffold1000|size223437 4336 GCTA 25 T <NA> <NA> <NA> 120 NA NA NA 82.75862 NA NA NA
这是dplyr
解决方案。花了我一些时间,我需要一些帮助 :
library(dplyr)
library(tidyr)
df1 %>%
mutate(id = row_number()) %>%
unite("conc1", c(ALT_1, AO_1, AOF_1), sep = "_") %>%
unite("conc2", c(ALT_2, AO_2, AOF_2), sep = "_") %>%
unite("conc3", c(ALT_3, AO_3, AOF_3), sep = "_") %>%
unite("conc4", c(ALT_4, AO_4, AOF_4), sep = "_") %>%
pivot_longer(
starts_with("conc")
) %>%
mutate(value = ifelse(value=="NA_NA_NA", NA_character_, value)) %>%
group_by(id) %>%
mutate(value = sort(value, na.last = TRUE)) %>%
ungroup() %>%
pivot_wider(
names_from = name,
values_from = value,
values_fill = "0"
) %>%
separate(conc1, c("ALT_1", "AO_1", "AOF_1"), sep = "_") %>%
separate(conc2, c("ALT_2", "AO_2", "AOF_2"), sep = "_") %>%
separate(conc3, c("ALT_3", "AO_3", "AOF_3"), sep = "_") %>%
separate(conc4, c("ALT_4", "AO_4", "AOF_4"), sep = "_") %>%
select(CHROM, POS, REF, RO, starts_with("ALT"), starts_with("AO_"), starts_with("AOF_")) %>%
type.convert(as.is=TRUE)
CHROM POS REF RO ALT_1 ALT_2 ALT_3 ALT_4 AO_1 AO_2 AO_3 AO_4 AOF_1 AOF_2 AOF_3 AOF_4
<chr> <int> <chr> <int> <chr> <chr> <chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 scaffold1000|size223437 666 A 20 AGT CAG G GAT 101 12 6 13 66.4 7.89 3.95 8.55
2 scaffold1000|size223437 1332 TA 14 TGA TGC NA NA 5 4 NA NA 21.7 17.4 NA NA
3 scaffold1000|size223437 3445 CTTGA 9 AGC CGC TGA NA 67 34 18 NA 52.3 26.6 14.1 NA
4 scaffold1000|size223437 4336 GCTA 25 T NA NA NA 120 NA NA NA 82.8 NA NA NA
我在 RStudio 中有几个大型数据帧,它们具有以下结构:
Original data structure
structure(list(CHROM = c("scaffold1000|size223437", "scaffold1000|size223437",
"scaffold1000|size223437", "scaffold1000|size223437"), POS = c(666,
1332, 3445, 4336), REF = c("A", "TA", "CTTGA", "GCTA"), RO = c(20,
14, 9, 25), ALT_1 = c("GAT", "TGC", "AGC", "T"), ALT_2 = c("CAG",
"TGA", "CGC", NA), ALT_3 = c("G", NA, "TGA", NA), ALT_4 = c("AGT",
NA, NA, NA), AO_1 = c(13, 4, 67, 120), AO_2 = c(12, 5, 34, NA
), AO_3 = c(6, NA, 18, NA), AO_4 = c(101, NA, NA, NA), AOF_1 = c(8.55263157894737,
17.3913043478261, 52.34375, 82.7586206896552), AOF_2 = c(7.89473684210526,
21.7391304347826, 26.5625, NA), AOF_3 = c(3.94736842105263, NA,
14.0625, NA), AOF_4 = c(66.4473684210526, NA, NA, NA)), class = "data.frame", row.names = c(NA,
-4L))
但为了进行分析,我需要它看起来像这样:
Desired output
structure(list(CHROM = c("scaffold1000|size223437", "scaffold1000|size223437",
"scaffold1000|size223437", "scaffold1000|size223437"), POS = c(666,
1332, 3445, 4336), REF = c("A", "TA", "CTTGA", "GCTA"), RO = c(20,
14, 9, 25), ALT_1 = c("AGT", "TGA", "AGC", "T"), ALT_2 = c("CAG",
"TGC", "CGC", NA), ALT_3 = c("G", NA, "TGA", NA), ALT_4 = c("GAT",
NA, NA, NA), AO_1 = c(101, 5, 67, 120), AO_2 = c(12, 4, 34, NA
), AO_3 = c(6, NA, 18, NA), AO_4 = c(13, NA, NA, NA), AOF_1 = c(66.4473684210526,
21.7391304347826, 52.34375, 82.7586206896552), AOF_2 = c(7.89473684210526,
17.3913043478261, 26.5625, NA), AOF_3 = c(3.94736842105263, NA,
14.0625, NA), AOF_4 = c(8.55263157894737, NA, NA, NA)), class = "data.frame", row.names = c(NA,
-4L))
所以我想做的是以某种方式重新排列行的内容,即 ALT_1、ALT_2、ALT_3、ALT_4 列是按字母排序的,但同时我还需要重新排列AO和AOF对应的列,让值仍然匹配。 (AO_1 的值仍应与 ALT_1 中的序列匹配。 因此,如果 ALT_1 在排序后的数据框中变为 ALT_2,则 AO_1 也应变为 AO_2)
到目前为止我尝试过但没有奏效的方法:
将 ALT_1、AO_1、AOF_1 的值全部粘贴到一个字段中,所以我将它们与
放在一起 if (is.na(X[i,6]) == FALSE) {
X[i,6] <- paste(X[i,6],X[i,10],X[i,14],sep=" ")
}
}
然后我想提取每一行作为一个向量来对值进行排序并将其放回数据框中,但我没能做到这一点。
所以问题是我如何订购数据框以获得所需的输出? (我需要将其应用于 32 个数据帧,每个数据帧都具有 >100.000 个值)
这里有一个data.table
方法
library(data.table)
# Set to data.table format
setDT(mydata)
# Melt to long format
DT.melt <- melt(mydata, measure.vars = patterns(ALT = "^ALT_", AO = "^AO_", AOF = "^AOF_"))
# order by groups, na's at the end
setorderv(DT.melt, cols = c("CHROM", "POS", "ALT"), na.last = TRUE)
# cast to wide again, use rowid() for numbering
dcast(DT.melt, CHROM + POS + REF + RO ~ rowid(REF), value.var = list("ALT", "AO", "AOF"))
# CHROM POS REF RO ALT_1 ALT_2 ALT_3 ALT_4 AO_1 AO_2 AO_3 AO_4 AOF_1 AOF_2 AOF_3 AOF_4
# 1: scaffold1000|size223437 666 A 20 AGT CAG G GAT 101 12 6 13 66.44737 7.894737 3.947368 8.552632
# 2: scaffold1000|size223437 1332 TA 14 TGA TGC <NA> <NA> 5 4 NA NA 21.73913 17.391304 NA NA
# 3: scaffold1000|size223437 3445 CTTGA 9 AGC CGC TGA <NA> 67 34 18 NA 52.34375 26.562500 14.062500 NA
# 4: scaffold1000|size223437 4336 GCTA 25 T <NA> <NA> <NA> 120 NA NA NA 82.75862 NA NA NA
这是dplyr
解决方案。花了我一些时间,我需要一些帮助
library(dplyr)
library(tidyr)
df1 %>%
mutate(id = row_number()) %>%
unite("conc1", c(ALT_1, AO_1, AOF_1), sep = "_") %>%
unite("conc2", c(ALT_2, AO_2, AOF_2), sep = "_") %>%
unite("conc3", c(ALT_3, AO_3, AOF_3), sep = "_") %>%
unite("conc4", c(ALT_4, AO_4, AOF_4), sep = "_") %>%
pivot_longer(
starts_with("conc")
) %>%
mutate(value = ifelse(value=="NA_NA_NA", NA_character_, value)) %>%
group_by(id) %>%
mutate(value = sort(value, na.last = TRUE)) %>%
ungroup() %>%
pivot_wider(
names_from = name,
values_from = value,
values_fill = "0"
) %>%
separate(conc1, c("ALT_1", "AO_1", "AOF_1"), sep = "_") %>%
separate(conc2, c("ALT_2", "AO_2", "AOF_2"), sep = "_") %>%
separate(conc3, c("ALT_3", "AO_3", "AOF_3"), sep = "_") %>%
separate(conc4, c("ALT_4", "AO_4", "AOF_4"), sep = "_") %>%
select(CHROM, POS, REF, RO, starts_with("ALT"), starts_with("AO_"), starts_with("AOF_")) %>%
type.convert(as.is=TRUE)
CHROM POS REF RO ALT_1 ALT_2 ALT_3 ALT_4 AO_1 AO_2 AO_3 AO_4 AOF_1 AOF_2 AOF_3 AOF_4
<chr> <int> <chr> <int> <chr> <chr> <chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 scaffold1000|size223437 666 A 20 AGT CAG G GAT 101 12 6 13 66.4 7.89 3.95 8.55
2 scaffold1000|size223437 1332 TA 14 TGA TGC NA NA 5 4 NA NA 21.7 17.4 NA NA
3 scaffold1000|size223437 3445 CTTGA 9 AGC CGC TGA NA 67 34 18 NA 52.3 26.6 14.1 NA
4 scaffold1000|size223437 4336 GCTA 25 T NA NA NA 120 NA NA NA 82.8 NA NA NA