探查器(nvvp 和 nvprof)未显示 "Page Fault" 信息
Profilers (nvvp and nvprof) not showing "Page Fault" information
我正在分析 NVIDIA 开发者论坛 Unified Memory for CUDA Beginners 中提供的测试代码。
代码:
#include <iostream>
#include <math.h>
// CUDA kernel to add elements of two arrays
__global__
void add(int n, float* x, float* y)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
y[i] = x[i] + y[i];
}
int main(void)
{
int N = 1 << 20;
float* x, * y;
// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
// initialize x and y arrays on the host
for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;
}
// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add << <numBlocks, blockSize >> > (N, x, y);
// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
float maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = fmax(maxError, fabs(y[i] - 3.0f));
std::cout << "Max error: " << maxError << std::endl;
// Free memory
cudaFree(x);
cudaFree(y);
return 0;
}
问题:作者提供的分析结果显示了有关“页面错误”的信息,但是当我运行 nvprof
和 nvvp
分析器,我没有得到任何关于页面错误的信息。是否需要明确设置任何标志或其他内容才能获取该信息?
我的 nvprof 输出:
== 20160 == Profiling result :
Type Time(%) Time Calls Avg Min Max Name
GPU activities : 100.00 % 60.513us 1 60.513us 60.513us 60.513us add(int, float*, float*)
API calls : 81.81 % 348.14ms 2 174.07ms 1.5933ms 346.54ms cudaMallocManaged
16.10 % 68.511ms 1 68.511ms 68.511ms 68.511ms cuDevicePrimaryCtxRelease
1.34 % 5.7002ms 1 5.7002ms 5.7002ms 5.7002ms cudaLaunchKernel
0.66 % 2.8192ms 2 1.4096ms 1.0669ms 1.7523ms cudaFree
0.07 % 277.80us 1 277.80us 277.80us 277.80us cudaDeviceSynchronize
0.01 % 33.500us 3 11.166us 3.5000us 16.400us cuModuleUnload
0.00 % 19.800us 1 19.800us 19.800us 19.800us cuDeviceTotalMem
0.00 % 16.700us 101 165ns 100ns 900ns cuDeviceGetAttribute
0.00 % 9.2000us 3 3.0660us 200ns 8.2000us cuDeviceGetCount
0.00 % 3.1000us 1 3.1000us 3.1000us 3.1000us cuDeviceGetName
0.00 % 2.1000us 2 1.0500us 300ns 1.8000us cuDeviceGet
0.00 % 300ns 1 300ns 300ns 300ns cuDeviceGetLuid
0.00 % 200ns 1 200ns 200ns 200ns cuDeviceGetUuid
== 20160 == Unified Memory profiling result :
Device "GeForce GTX 1070 (0)"
Count Avg Size Min Size Max Size Total Size Total Time Name
64 128.00KB 128.00KB 128.00KB 8.000000MB 3.217900ms Host To Device
146 84.164KB 32.000KB 1.0000MB 12.00000MB 68.17800ms Device To Host
我的 nvvp 分析结果:
操作系统很重要。
您正在使用 windows,与 linux 相比,当看到 pascal 或更新的设备时,CUDA 统一内存 (UM) 系统工作 quite a bit differently on windows。
在 windows,页面错误不是 UM 系统用来确定何时迁移数据的机制,因此它们不会在分析器中或由分析器报告。
我正在分析 NVIDIA 开发者论坛 Unified Memory for CUDA Beginners 中提供的测试代码。
代码:
#include <iostream>
#include <math.h>
// CUDA kernel to add elements of two arrays
__global__
void add(int n, float* x, float* y)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
y[i] = x[i] + y[i];
}
int main(void)
{
int N = 1 << 20;
float* x, * y;
// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
// initialize x and y arrays on the host
for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;
}
// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add << <numBlocks, blockSize >> > (N, x, y);
// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
float maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = fmax(maxError, fabs(y[i] - 3.0f));
std::cout << "Max error: " << maxError << std::endl;
// Free memory
cudaFree(x);
cudaFree(y);
return 0;
}
问题:作者提供的分析结果显示了有关“页面错误”的信息,但是当我运行 nvprof
和 nvvp
分析器,我没有得到任何关于页面错误的信息。是否需要明确设置任何标志或其他内容才能获取该信息?
我的 nvprof 输出:
== 20160 == Profiling result :
Type Time(%) Time Calls Avg Min Max Name
GPU activities : 100.00 % 60.513us 1 60.513us 60.513us 60.513us add(int, float*, float*)
API calls : 81.81 % 348.14ms 2 174.07ms 1.5933ms 346.54ms cudaMallocManaged
16.10 % 68.511ms 1 68.511ms 68.511ms 68.511ms cuDevicePrimaryCtxRelease
1.34 % 5.7002ms 1 5.7002ms 5.7002ms 5.7002ms cudaLaunchKernel
0.66 % 2.8192ms 2 1.4096ms 1.0669ms 1.7523ms cudaFree
0.07 % 277.80us 1 277.80us 277.80us 277.80us cudaDeviceSynchronize
0.01 % 33.500us 3 11.166us 3.5000us 16.400us cuModuleUnload
0.00 % 19.800us 1 19.800us 19.800us 19.800us cuDeviceTotalMem
0.00 % 16.700us 101 165ns 100ns 900ns cuDeviceGetAttribute
0.00 % 9.2000us 3 3.0660us 200ns 8.2000us cuDeviceGetCount
0.00 % 3.1000us 1 3.1000us 3.1000us 3.1000us cuDeviceGetName
0.00 % 2.1000us 2 1.0500us 300ns 1.8000us cuDeviceGet
0.00 % 300ns 1 300ns 300ns 300ns cuDeviceGetLuid
0.00 % 200ns 1 200ns 200ns 200ns cuDeviceGetUuid
== 20160 == Unified Memory profiling result :
Device "GeForce GTX 1070 (0)"
Count Avg Size Min Size Max Size Total Size Total Time Name
64 128.00KB 128.00KB 128.00KB 8.000000MB 3.217900ms Host To Device
146 84.164KB 32.000KB 1.0000MB 12.00000MB 68.17800ms Device To Host
我的 nvvp 分析结果:
操作系统很重要。
您正在使用 windows,与 linux 相比,当看到 pascal 或更新的设备时,CUDA 统一内存 (UM) 系统工作 quite a bit differently on windows。
在 windows,页面错误不是 UM 系统用来确定何时迁移数据的机制,因此它们不会在分析器中或由分析器报告。