如何使用 merge() 避免重复条目?

How do I avoid duplicate entries using merge()?

如果这听起来像是一个非常愚蠢的问题,请原谅我,我刚刚开始重新编码。

我有 6 个数据库,每个数据库有 3 列和 16 行,我正在尝试使用 merge() 函数进行分析。使用合并函数时,by.x 和 by.y 参数重复 7 或 8 次,我不知道为什么以及如何修复它。 这是它的样子:

mycob1 <- read.csv("MYCOB_1.csv")
mycob2 <- read.csv("MYCOB_2.csv")
mycob1 
Lot_210927       RFU        Ct
1           0    6.3588  9.164329
2           0    5.0394 11.350701
3           0    4.9946 37.334669
4           0    4.8604  8.168337
5           0    4.9032 37.306613
6           0    4.9502 22.176353
7           0    4.7858 23.713427
8           0    5.2778 10.496994
9           1 1021.8458 32.119668
10          1 1020.1998 31.500716
11          1 1065.8000 31.979674
12          1  988.0452 31.019754
13          1 1085.2206 31.557973
14          1 1072.8540 31.745491
15          1 1020.6496 31.218151
16          1  983.4106 31.981162
mycob2
   Lot_211020       RFU       Ct
1           0    0.6876 47.72087
2           0   40.1056 38.37418
3           0   97.0882 37.72917
4           0   10.3170 36.18236
5           0   67.3742 37.39050
6           0   10.2540 40.16776
7           0    6.9624 28.07575
8           0    9.5718 28.84626
9           0   13.0306 38.87375
10          1  860.3956 29.15746
11          1  884.9338 30.03665
12          1 1552.2462 27.90839
13          1  738.2328 29.22760
14          1 1419.6448 29.13627
15          1 1441.6212 29.35351
16          1  424.9774 31.56446
>
M1 <- merge(mycob1, mycob2, 
      by.x = "Lot_210927", 
      by.y = "Lot_211020", 
      all.x = TRUE, 
      all.y = FALSE)
Lot_210927     RFU.x      Ct.x     RFU.y     Ct.y
1            0    6.3588  9.164329    0.6876 47.72087
2            0    6.3588  9.164329   40.1056 38.37418
3            0    6.3588  9.164329   97.0882 37.72917
4            0    6.3588  9.164329   10.3170 36.18236
5            0    6.3588  9.164329   67.3742 37.39050
6            0    6.3588  9.164329   10.2540 40.16776
7            0    6.3588  9.164329    6.9624 28.07575
8            0    6.3588  9.164329    9.5718 28.84626
9            0    6.3588  9.164329   13.0306 38.87375
10           0    5.0394 11.350701    0.6876 47.72087
11           0    5.0394 11.350701   40.1056 38.37418
12           0    5.0394 11.350701   97.0882 37.72917
13           0    5.0394 11.350701   10.3170 36.18236
14           0    5.0394 11.350701   67.3742 37.39050
15           0    5.0394 11.350701   10.2540 40.16776
16           0    5.0394 11.350701    6.9624 28.07575
17           0    5.0394 11.350701    9.5718 28.84626
18           0    5.0394 11.350701   13.0306 38.87375
19           0    4.9946 37.334669    0.6876 47.72087
20           0    4.9946 37.334669   40.1056 38.37418
21           0    4.9946 37.334669   97.0882 37.72917
22           0    4.9946 37.334669   10.3170 36.18236
23           0    4.9946 37.334669   67.3742 37.39050
24           0    4.9946 37.334669   10.2540 40.16776
25           0    4.9946 37.334669    6.9624 28.07575
26           0    4.9946 37.334669    9.5718 28.84626
27           0    4.9946 37.334669   13.0306 38.87375
28           0    4.8604  8.168337    0.6876 47.72087
29           0    4.8604  8.168337   40.1056 38.37418
30           0    4.8604  8.168337   97.0882 37.72917
31           0    4.8604  8.168337   10.3170 36.18236
32           0    4.8604  8.168337   67.3742 37.39050
33           0    4.8604  8.168337   10.2540 40.16776
34           0    4.8604  8.168337    6.9624 28.07575
35           0    4.8604  8.168337    9.5718 28.84626
36           0    4.8604  8.168337   13.0306 38.87375
37           0    4.9032 37.306613    0.6876 47.72087
38           0    4.9032 37.306613   40.1056 38.37418
39           0    4.9032 37.306613   97.0882 37.72917
40           0    4.9032 37.306613   10.3170 36.18236
41           0    4.9032 37.306613   67.3742 37.39050
42           0    4.9032 37.306613   10.2540 40.16776
43           0    4.9032 37.306613    6.9624 28.07575
44           0    4.9032 37.306613    9.5718 28.84626
45           0    4.9032 37.306613   13.0306 38.87375
46           0    4.9502 22.176353    0.6876 47.72087
47           0    4.9502 22.176353   40.1056 38.37418
48           0    4.9502 22.176353   97.0882 37.72917
49           0    4.9502 22.176353   10.3170 36.18236
50           0    4.9502 22.176353   67.3742 37.39050
51           0    4.9502 22.176353   10.2540 40.16776
52           0    4.9502 22.176353    6.9624 28.07575
53           0    4.9502 22.176353    9.5718 28.84626
54           0    4.9502 22.176353   13.0306 38.87375
55           0    4.7858 23.713427    0.6876 47.72087
56           0    4.7858 23.713427   40.1056 38.37418
57           0    4.7858 23.713427   97.0882 37.72917
58           0    4.7858 23.713427   10.3170 36.18236
59           0    4.7858 23.713427   67.3742 37.39050
60           0    4.7858 23.713427   10.2540 40.16776
61           0    4.7858 23.713427    6.9624 28.07575
62           0    4.7858 23.713427    9.5718 28.84626
63           0    4.7858 23.713427   13.0306 38.87375
64           0    5.2778 10.496994    0.6876 47.72087
65           0    5.2778 10.496994   40.1056 38.37418
66           0    5.2778 10.496994   97.0882 37.72917
67           0    5.2778 10.496994   10.3170 36.18236
68           0    5.2778 10.496994   67.3742 37.39050
69           0    5.2778 10.496994   10.2540 40.16776
70           0    5.2778 10.496994    6.9624 28.07575
71           0    5.2778 10.496994    9.5718 28.84626
72           0    5.2778 10.496994   13.0306 38.87375
73           1 1021.8458 32.119668  860.3956 29.15746
74           1 1021.8458 32.119668  884.9338 30.03665
75           1 1021.8458 32.119668 1552.2462 27.90839
76           1 1021.8458 32.119668  738.2328 29.22760
77           1 1021.8458 32.119668 1419.6448 29.13627
78           1 1021.8458 32.119668 1441.6212 29.35351
79           1 1021.8458 32.119668  424.9774 31.56446
80           1 1020.1998 31.500716  860.3956 29.15746
81           1 1020.1998 31.500716  884.9338 30.03665
82           1 1020.1998 31.500716 1552.2462 27.90839
83           1 1020.1998 31.500716  738.2328 29.22760
84           1 1020.1998 31.500716 1419.6448 29.13627
85           1 1020.1998 31.500716 1441.6212 29.35351
86           1 1020.1998 31.500716  424.9774 31.56446
87           1 1065.8000 31.979674  860.3956 29.15746
88           1 1065.8000 31.979674  884.9338 30.03665
89           1 1065.8000 31.979674 1552.2462 27.90839
90           1 1065.8000 31.979674  738.2328 29.22760
91           1 1065.8000 31.979674 1419.6448 29.13627
92           1 1065.8000 31.979674 1441.6212 29.35351
93           1 1065.8000 31.979674  424.9774 31.56446
94           1  988.0452 31.019754  860.3956 29.15746
95           1  988.0452 31.019754  884.9338 30.03665
96           1  988.0452 31.019754 1552.2462 27.90839
97           1  988.0452 31.019754  738.2328 29.22760
98           1  988.0452 31.019754 1419.6448 29.13627
99           1  988.0452 31.019754 1441.6212 29.35351
100          1  988.0452 31.019754  424.9774 31.56446
101          1 1085.2206 31.557973  860.3956 29.15746
102          1 1085.2206 31.557973  884.9338 30.03665
103          1 1085.2206 31.557973 1552.2462 27.90839
104          1 1085.2206 31.557973  738.2328 29.22760
105          1 1085.2206 31.557973 1419.6448 29.13627
106          1 1085.2206 31.557973 1441.6212 29.35351
107          1 1085.2206 31.557973  424.9774 31.56446
108          1 1072.8540 31.745491  860.3956 29.15746
109          1 1072.8540 31.745491  884.9338 30.03665
110          1 1072.8540 31.745491 1552.2462 27.90839
111          1 1072.8540 31.745491  738.2328 29.22760
112          1 1072.8540 31.745491 1419.6448 29.13627
113          1 1072.8540 31.745491 1441.6212 29.35351
114          1 1072.8540 31.745491  424.9774 31.56446
115          1 1020.6496 31.218151  860.3956 29.15746
116          1 1020.6496 31.218151  884.9338 30.03665
117          1 1020.6496 31.218151 1552.2462 27.90839
118          1 1020.6496 31.218151  738.2328 29.22760
119          1 1020.6496 31.218151 1419.6448 29.13627
120          1 1020.6496 31.218151 1441.6212 29.35351
121          1 1020.6496 31.218151  424.9774 31.56446
122          1  983.4106 31.981162  860.3956 29.15746
123          1  983.4106 31.981162  884.9338 30.03665
124          1  983.4106 31.981162 1552.2462 27.90839
125          1  983.4106 31.981162  738.2328 29.22760
126          1  983.4106 31.981162 1419.6448 29.13627
127          1  983.4106 31.981162 1441.6212 29.35351
128          1  983.4106 31.981162  424.9774 31.56446

如有任何建议,我们将不胜感激!

也许是这样的:

left_join(mycob1, mycob2, by.x = "Lot_210927", by.y = "Lot_211020")

R 中的左连接是两个数据帧之间的合并操作,其中合并 returns 来自一个 table(左侧)的所有行和来自第二个 table.

如果您想要其他联接,请参阅此处:https://www.datasciencemadesimple.com/join-in-r-merge-in-r/ 以获得对联接选项的详细解释。