使用 R 中的 nls 函数循环分组数据
Looping over grouped data using the nls function in R
我有一个分组数据集。我的数据按 GaugeID 分组。我有一个 nls 函数,我想遍历每个组并提供一个输出值。
library(tidyverse)
library(stats)
# sample of data (yearly), first column is gauge (grouping variable), year, then two formula inputs PETvP and ETvP
# A tibble: 10 x 4
GaugeID WATERYR PETvP ETvP
<chr> <dbl> <dbl> <dbl>
1 06892000 1981 0.854 0.754
2 06892000 1982 0.798 0.708
3 06892000 1983 1.12 0.856
4 06892000 1984 0.905 0.720
5 06892000 1985 0.721 0.618
6 06892000 1986 0.717 0.625
7 06892000 1987 0.930 0.783
8 06892000 1988 1.57 0.945
9 06892000 1989 1.15 0.739
10 06892000 1990 0.933 0.805
11 08171300 1981 0.854 0.754
12 08171300 1982 0.798 0.708
13 08171300 1983 1.12 0.856
14 08171300 1984 0.905 0.720
15 08171300 1985 0.721 0.618
16 08171300 1986 0.717 0.625
17 08171300 1987 0.930 0.783
18 08171300 1988 1.57 0.945
19 08171300 1989 1.15 0.739
20 08171300 1990 0.933 0.805
# attempted for loop
for (i in unique(yearly$GaugeID)) {
myValue = nls(ETvP[i] ~ I(1 + PETvP[i] - (1 + PETvP[i]^(w))^(1/w)), data = yearly,
start = list(w = 2), trace = TRUE)
}
我收到以下错误
Error in model.frame.default(formula = ~ETvP + i + PETvP, data = yearly) :
variable lengths differ (found for 'i')
我没有找到太多关于使用 nls 函数循环的信息。本质上,我正在生成曲线并且需要曲线 (w) 的值来为每个仪表输出。
如果我将公式分配给一个量规(如果我对数据进行子集化,即第一个量规),它会起作用,但当我尝试在具有分组数据的整个数据框上使用它时,它就不会起作用。
例如,这有效
# gaugeA
# A tibble: 10 x 4
GaugeID WATERYR PETvP ETvP
<chr> <dbl> <dbl> <dbl>
1 06892000 1981 0.854 0.754
2 06892000 1982 0.798 0.708
3 06892000 1983 1.12 0.856
4 06892000 1984 0.905 0.720
5 06892000 1985 0.721 0.618
6 06892000 1986 0.717 0.625
7 06892000 1987 0.930 0.783
8 06892000 1988 1.57 0.945
9 06892000 1989 1.15 0.739
10 06892000 1990 0.933 0.805
test = nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)), data = gaugeA,
start = list(w = 2), trace = TRUE)
1.574756 (4.26e+00): par = (2)
0.2649549 (1.46e+00): par = (2.875457)
0.09466832 (3.32e-01): par = (3.59986)
0.08543699 (2.53e-02): par = (3.881397)
0.08538308 (9.49e-05): par = (3.907099)
0.08538308 (1.13e-06): par = (3.907001)
> test
Nonlinear regression model
model: ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w))
data: gaugeA
w
3.907
residual sum-of-squares: 0.08538
Number of iterations to convergence: 5
Achieved convergence tolerance: 1.128e-06
关于如何获得整个分组数据框的子集结果的任何想法?它有 600 多种不同的仪表。提前谢谢你。
以下任何一项都有效:
使用summarise
:
df %>%
group_by(GaugeID) %>%
summarise(result = list(nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)),
data = cur_data(),
start = list(w = 2)))) %>%
pull(result)
[[1]]
Nonlinear regression model
model: ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w))
data: cur_data()
w
3.607
residual sum-of-squares: 0.01694
Number of iterations to convergence: 5
Achieved convergence tolerance: 7.11e-08
[[2]]
Nonlinear regression model
model: ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w))
data: cur_data()
w
1.086
residual sum-of-squares: 0.1532
Number of iterations to convergence: 5
Achieved convergence tolerance: 2.685e-07
使用map
:
df %>%
group_split(GaugeID) %>%
map(~nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)),
data = .x,
start = list(w = 2)))
我通常更喜欢 purrr
和 dplyr
用于分组数据的循环函数。
我无法编辑数据,但也许这行得通:
library(dplyr)
library(purrr)
yearly %>% group_by(GaugeID) %>% summarise(test = nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)), data = gaugeA, start = list(w = 2), trace = TRUE)
可以制定单个模型来消除循环。保证GaugeID是一个因子,在公式中用GaugeID下标w,并提供一个起始值列表,其w分量是一个向量,每个级别的GaugeID都有一个起始值。
df$GaugeID <- factor(df$GaugeID)
fo <- ETvP ~ 1 + PETvP - (1 + PETvP^(w[GaugeID]))^(1/w[GaugeID])
st <- list(w = rep(2, nlevels(df$GaugeID)))
fm <- nls(fo, df, start = st)
fm
summary(fm)
data.frame(GaugeID = levels(df$GaugeID), coef(summary(fm)), check.names = FALSE)
我有一个分组数据集。我的数据按 GaugeID 分组。我有一个 nls 函数,我想遍历每个组并提供一个输出值。
library(tidyverse)
library(stats)
# sample of data (yearly), first column is gauge (grouping variable), year, then two formula inputs PETvP and ETvP
# A tibble: 10 x 4
GaugeID WATERYR PETvP ETvP
<chr> <dbl> <dbl> <dbl>
1 06892000 1981 0.854 0.754
2 06892000 1982 0.798 0.708
3 06892000 1983 1.12 0.856
4 06892000 1984 0.905 0.720
5 06892000 1985 0.721 0.618
6 06892000 1986 0.717 0.625
7 06892000 1987 0.930 0.783
8 06892000 1988 1.57 0.945
9 06892000 1989 1.15 0.739
10 06892000 1990 0.933 0.805
11 08171300 1981 0.854 0.754
12 08171300 1982 0.798 0.708
13 08171300 1983 1.12 0.856
14 08171300 1984 0.905 0.720
15 08171300 1985 0.721 0.618
16 08171300 1986 0.717 0.625
17 08171300 1987 0.930 0.783
18 08171300 1988 1.57 0.945
19 08171300 1989 1.15 0.739
20 08171300 1990 0.933 0.805
# attempted for loop
for (i in unique(yearly$GaugeID)) {
myValue = nls(ETvP[i] ~ I(1 + PETvP[i] - (1 + PETvP[i]^(w))^(1/w)), data = yearly,
start = list(w = 2), trace = TRUE)
}
我收到以下错误
Error in model.frame.default(formula = ~ETvP + i + PETvP, data = yearly) :
variable lengths differ (found for 'i')
我没有找到太多关于使用 nls 函数循环的信息。本质上,我正在生成曲线并且需要曲线 (w) 的值来为每个仪表输出。 如果我将公式分配给一个量规(如果我对数据进行子集化,即第一个量规),它会起作用,但当我尝试在具有分组数据的整个数据框上使用它时,它就不会起作用。 例如,这有效
# gaugeA
# A tibble: 10 x 4
GaugeID WATERYR PETvP ETvP
<chr> <dbl> <dbl> <dbl>
1 06892000 1981 0.854 0.754
2 06892000 1982 0.798 0.708
3 06892000 1983 1.12 0.856
4 06892000 1984 0.905 0.720
5 06892000 1985 0.721 0.618
6 06892000 1986 0.717 0.625
7 06892000 1987 0.930 0.783
8 06892000 1988 1.57 0.945
9 06892000 1989 1.15 0.739
10 06892000 1990 0.933 0.805
test = nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)), data = gaugeA,
start = list(w = 2), trace = TRUE)
1.574756 (4.26e+00): par = (2)
0.2649549 (1.46e+00): par = (2.875457)
0.09466832 (3.32e-01): par = (3.59986)
0.08543699 (2.53e-02): par = (3.881397)
0.08538308 (9.49e-05): par = (3.907099)
0.08538308 (1.13e-06): par = (3.907001)
> test
Nonlinear regression model
model: ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w))
data: gaugeA
w
3.907
residual sum-of-squares: 0.08538
Number of iterations to convergence: 5
Achieved convergence tolerance: 1.128e-06
关于如何获得整个分组数据框的子集结果的任何想法?它有 600 多种不同的仪表。提前谢谢你。
以下任何一项都有效:
使用summarise
:
df %>%
group_by(GaugeID) %>%
summarise(result = list(nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)),
data = cur_data(),
start = list(w = 2)))) %>%
pull(result)
[[1]]
Nonlinear regression model
model: ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w))
data: cur_data()
w
3.607
residual sum-of-squares: 0.01694
Number of iterations to convergence: 5
Achieved convergence tolerance: 7.11e-08
[[2]]
Nonlinear regression model
model: ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w))
data: cur_data()
w
1.086
residual sum-of-squares: 0.1532
Number of iterations to convergence: 5
Achieved convergence tolerance: 2.685e-07
使用map
:
df %>%
group_split(GaugeID) %>%
map(~nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)),
data = .x,
start = list(w = 2)))
我通常更喜欢 purrr
和 dplyr
用于分组数据的循环函数。
我无法编辑数据,但也许这行得通:
library(dplyr)
library(purrr)
yearly %>% group_by(GaugeID) %>% summarise(test = nls(ETvP ~ I(1 + PETvP - (1 + PETvP^(w))^(1/w)), data = gaugeA, start = list(w = 2), trace = TRUE)
可以制定单个模型来消除循环。保证GaugeID是一个因子,在公式中用GaugeID下标w,并提供一个起始值列表,其w分量是一个向量,每个级别的GaugeID都有一个起始值。
df$GaugeID <- factor(df$GaugeID)
fo <- ETvP ~ 1 + PETvP - (1 + PETvP^(w[GaugeID]))^(1/w[GaugeID])
st <- list(w = rep(2, nlevels(df$GaugeID)))
fm <- nls(fo, df, start = st)
fm
summary(fm)
data.frame(GaugeID = levels(df$GaugeID), coef(summary(fm)), check.names = FALSE)