data_GAN R 中的逻辑回归

data_GAN Logistic Regression in R

我一直在阅读 R 中的逻辑回归。当 columns/variables 确实有意义时,它就有意义了。我的列是 A、B 和 C。C 列只有 1 和 0。我如何对如此有限的数据集进行回归?任何指导或阅读资源都将不胜感激。

> library(Amelia)
> library(mlbench)
> library(dplyr)
> my_data<-read.csv("/Users/morenikeirving/GAN/data_GAN.csv")
> names(my_data)
[1] "A" "B" "C"
> head(my_data)
        A      B  C
1  4.4189 69.580 NA
2 13.2019 61.250 NA
3 25.6290 56.740  1
4 22.2943 68.860  1
5  0.2163 57.690 NA
6  0.2875 72.914 NA
> summary(my_data)
       A                B               C       
 Min.   : 0.000   Min.   :33.00   Min.   :1     
 1st Qu.: 1.226   1st Qu.:59.69   1st Qu.:1     
 Median : 5.897   Median :61.87   Median :1     
 Mean   : 7.450   Mean   :65.40   Mean   :1     
 3rd Qu.:12.600   3rd Qu.:69.58   3rd Qu.:1     
 Max.   :25.800   Max.   :95.00   Max.   :1     
                                  NA's   :2923  
> missmap(my_data, col=c("blue", "red"), legend=FALSE)
> my_data<-my_data %>% mutate(C = ifelse(is.na(C),0,C))
> missmap(my_data, col=c("blue", "red"), legend=FALSE)
> model <-glm(x~., data=my_data, family= binomial)
Error in eval(predvars, data, env) : object 'x' not found
> #Library to read in xls file 
> library(Amelia)
> library(mlbench)
> library(dplyr)
> 
> #Read in csv file 
> my_data<-read.csv("/Users/GAN/data_GAN.csv")
> 
> #Exploring Data 
> #see what's on the data frame 
> names(my_data)
[1] "A" "B" "C"
> 
> #Look at first few rows of the data 
> head(my_data)
        A      B  C
1  4.4189 69.580 NA
2 13.2019 61.250 NA
3 25.6290 56.740  1
4 22.2943 68.860  1
5  0.2163 57.690 NA
6  0.2875 72.914 NA
> 
> #Overall picture of data; looking at first few rows revealed missing data
> summary(my_data)
       A                B               C       
 Min.   : 0.000   Min.   :33.00   Min.   :1     
 1st Qu.: 1.226   1st Qu.:59.69   1st Qu.:1     
 Median : 5.897   Median :61.87   Median :1     
 Mean   : 7.450   Mean   :65.40   Mean   :1     
 3rd Qu.:12.600   3rd Qu.:69.58   3rd Qu.:1     
 Max.   :25.800   Max.   :95.00   Max.   :1     
                                  NA's   :2923  
> #lots of NAs
> 
> #Examine missing data 
> 
> missmap(my_data, col=c("blue", "red"), legend=FALSE)
> 
> #Replace N/A 
> 
> my_data<-my_data %>% mutate(C = ifelse(is.na(C),0,C))
> 
> #Check to make sure missing values are resolved
> missmap(my_data, col=c("blue", "red"), legend=FALSE)

(1) 你问逻辑回归代码怎么写? 或者 (2) 您是在问如何提高数据集的质量?

(1) https://stats.idre.ucla.edu/r/dae/logit-regression/

模型<-glm(C~A+B,数据=my_data,家庭=“二项式”)

在真实环境中,您的数据应该有意义。但在训练实践数据集中,variables/columns 的名称无关紧要。重要的是您的数据适合用于您的模型(例如,线性回归要求您的结果是一个连续变量;逻辑回归倾向于使用二元结果,例如您的 C 列)

(2) 如果您的数据集较小且数据质量较低,那么除了获取新数据集或收集更多数据外,您无能为力。

您可以考虑重新采样,但这并不总是适用,并且在使用时有其自身的一系列问题