使用 python sklearn 的逻辑回归和 GridSearchCV

logistic regression and GridSearchCV using python sklearn

我正在尝试来自此 page 的代码。我 运行 直到部分 LR (tf-idf) 得到了相似的结果

之后我决定尝试 GridSearchCV。我的问题如下:

1)

#lets try gridsearchcv
#https://www.kaggle.com/enespolat/grid-search-with-logistic-regression

from sklearn.model_selection import GridSearchCV

grid={"C":np.logspace(-3,3,7), "penalty":["l2"]}# l1 lasso l2 ridge
logreg=LogisticRegression(solver = 'liblinear')
logreg_cv=GridSearchCV(logreg,grid,cv=3,scoring='f1')
logreg_cv.fit(X_train_vectors_tfidf, y_train)

print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
print("best score :",logreg_cv.best_score_)

#tuned hpyerparameters :(best parameters)  {'C': 10.0, 'penalty': 'l2'}
#best score : 0.7390325593588823

然后我手动计算了f1分数。为什么不匹配?

logreg_cv.predict_proba(X_train_vectors_tfidf)[:,1]
final_prediction=np.where(logreg_cv.predict_proba(X_train_vectors_tfidf)[:,1]>=0.5,1,0)
#https://www.statology.org/f1-score-in-python/
from sklearn.metrics import f1_score
#calculate F1 score
f1_score(y_train, final_prediction)
0.9839388145315489
  1. 如果我尝试 scoring='precision' 为什么会出现以下错误?我不清楚主要是因为我有相对平衡的数据集 (55-45%) 和 f1 需要 precision 的计算没有任何问题

#lets try gridsearchcv #https://www.kaggle.com/enespolat/grid-search-with-logistic-regression

from sklearn.model_selection import GridSearchCV

grid={"C":np.logspace(-3,3,7), "penalty":["l2"]}# l1 lasso l2 ridge
logreg=LogisticRegression(solver = 'liblinear')
logreg_cv=GridSearchCV(logreg,grid,cv=3,scoring='precision')
logreg_cv.fit(X_train_vectors_tfidf, y_train)

print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
print("best score :",logreg_cv.best_score_)



/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
tuned hpyerparameters :(best parameters)  {'C': 0.1, 'penalty': 'l2'}
best score : 0.9474200393672962
  1. 有没有更简单的方法来获取对火车数据的预测?我们已经有了 logreg_cv 对象。我使用下面的方法来恢复预测。有没有更好的方法来做同样的事情?

logreg_cv.predict_proba(X_train_vectors_tfidf)[:,1]

############################

############更新 1

  1. 请回答上面的问题 1。在问题的评论中它说 The best score in GridSearchCV is calculated by taking the average score from cross validation for the best estimators. That is, it is calculated from data that is held out during fitting. From what I can tell, you are calculating predicted values from the training data and calculating an F1 score on that. Since the model was trained on that data, that is why the F1 score is so much larger compared to the results in the grid search

是我得到以下结果的原因 #tuned hpyerparameters :(best parameters) {'C': 10.0, 'penalty': 'l2'} #best score : 0.7390325593588823

但是当我手动操作时我得到 f1_score(y_train, final_prediction) 0.9839388145315489

2)

我尝试按照以下答案中的建议使用 f1_micro 进行调整。没有错误信息。我仍然不清楚为什么 f1_microprecision 失败时没有失败

from sklearn.model_selection import GridSearchCV

grid={"C":np.logspace(-3,3,7), "penalty":["l2"], "solver":['liblinear','newton-cg'], 'class_weight':[{ 0:0.95, 1:0.05 }, { 0:0.55, 1:0.45 }, { 0:0.45, 1:0.55 },{ 0:0.05, 1:0.95 }]}# l1 lasso l2 ridge
#logreg=LogisticRegression(solver = 'liblinear')
logreg=LogisticRegression()
logreg_cv=GridSearchCV(logreg,grid,cv=3,scoring='f1_micro')
logreg_cv.fit(X_train_vectors_tfidf, y_train)

tuned hpyerparameters :(best parameters)  {'C': 10.0, 'class_weight': {0: 0.45, 1: 0.55}, 'penalty': 'l2', 'solver': 'newton-cg'}
best score : 0.7894909688013136

你最终得到了精确的错误,因为你的一些惩罚对于这个模型来说太强了,如果你检查结果,当 C = 0.001 和 C = 0.01 时,你得到 0 的 f1 分数

res = pd.DataFrame(logreg_cv.cv_results_)
res.iloc[:,res.columns.str.contains("split[0-9]_test_score|params",regex=True)]
 
                           params  split0_test_score  split1_test_score  split2_test_score
0   {'C': 0.001, 'penalty': 'l2'}           0.000000           0.000000           0.000000
1    {'C': 0.01, 'penalty': 'l2'}           0.000000           0.000000           0.000000
2     {'C': 0.1, 'penalty': 'l2'}           0.973568           0.952607           0.952174
3     {'C': 1.0, 'penalty': 'l2'}           0.863934           0.851064           0.836449
4    {'C': 10.0, 'penalty': 'l2'}           0.811634           0.769547           0.787838
5   {'C': 100.0, 'penalty': 'l2'}           0.789826           0.762162           0.773438
6  {'C': 1000.0, 'penalty': 'l2'}           0.781003           0.750000           0.763871

你可以检查这个:

lr = LogisticRegression(C=0.01).fit(X_train_vectors_tfidf,y_train)
np.unique(lr.predict(X_train_vectors_tfidf))
array([0])

并且预测的概率向截距漂移:

# expected probability
np.exp(lr.intercept_)/(1+np.exp(lr.intercept_))
array([0.41764462])

lr.predict_proba(X_train_vectors_tfidf)
 
array([[0.58732636, 0.41267364],
       [0.57074279, 0.42925721],
       [0.57219143, 0.42780857],
       ...,
       [0.57215605, 0.42784395],
       [0.56988186, 0.43011814],
       [0.58966184, 0.41033816]])

关于“获取火车数据的预测”的问题,我认为这是唯一的方法。使用最佳参数在整个训练集上重新拟合模型,但不存储预测或预测概率。如果你正在寻找在训练/测试期间获得的值,你可以检查 cross_val_predict