python curve_fit 没有给出合理的拟合结果
python curve_fit does not give reasonable fitting result
我正在尝试将高斯分布拟合到光谱中,y 值大约为 10^(-19)。 Curve_fit 在我将整个数据乘以 10^(-19) 之前和之后给我的拟合结果都很差。附件是我的代码,它是一组相当简单的数据,只是值非常小。如果我想保留我的原始值,我将如何获得合理的高斯拟合来给我正确的参数?
#get fits data
aaa=pyfits.getdata('p1.cal.fits')
aaa=np.matrix(aaa)
nrow=np.shape(aaa)[0]
ncol=np.shape(aaa)[1]
ylo=79
yhi=90
xlo=0
xhi=1023
glo=430
ghi=470
#sum all the rows to get spectrum
ysum=[]
for x in range(xlo,xhi):
sum=np.sum(aaa[ylo:yhi,x])
ysum.append(sum)
wavelen_pix=range(xhi-xlo)
max=np.max(ysum)
print "maximum is at x=", np.where(ysum==max)
##fit gaussian
#fit only part of my data in the chosen range [glo:ghi]
x=wavelen_pix[glo:ghi]
y=ysum[glo:ghi]
def func(x, a, x0, sigma):
return a*np.exp(-(x-x0)**2/float((2*sigma**2)))
sig=np.std(ysum[500:1000]) #std of background noise
popt, pcov = curve_fit(func, x, sig)
print popt
#this gives me [1.,1.,1.], which is obviously wrong
gaus=func(x,popt[0],popt[1],popt[2])
aaa 是一个 153 x 1024 的图像矩阵,部分如下所示:
matrix([[ -8.99793629e-20, 8.57133275e-21, 4.83523386e-20, ...,
-1.54811004e-20, 5.22941515e-20, 1.71179195e-20],
[ 2.75769318e-20, 1.03177243e-20, -3.19634928e-21, ...,
1.66583803e-20, -9.88712568e-22, -2.56897725e-20],
[ 2.88121935e-20, 8.57964252e-21, -2.60784327e-20, ...,
1.72335180e-20, -7.61189937e-21, -3.45333075e-20],
...,
[ 1.04006903e-20, 1.61200683e-20, 7.04195205e-20, ...,
1.72459645e-20, 4.29404029e-20, 1.99889374e-20],
[ 3.22315752e-21, -5.61394194e-21, 3.28763096e-20, ...,
1.99063583e-20, 2.12989880e-20, -1.23250648e-21],
[ 3.66591810e-20, -8.08647455e-22, -6.22773168e-20, ...,
-4.06145681e-21, 4.92453132e-21, 4.23689309e-20]], dtype=float32)
你叫错了curve_fit
,这里是用法
curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, **kw)
- f 是你的函数,它的第一个 arg 是自变量数组,其后续 args 是函数参数(例如幅度,中心等)
- xdata是自变量
- ydata 是因变量
- p0 是对函数参数的初始猜测(对于高斯,这是振幅、宽度、中心)
默认情况下,p0 设置为 [1,1,...] 的列表,这可能就是为什么你会得到这个结果,因为你调用它不正确,所以拟合从未执行过。
尝试根据数据估计振幅、中心和宽度,然后制作一个 p0 对象(详见下文)
init_guess = ( a_i, x0_i, sig_i) # same order as they are supplied to your function
popt, pcov = curve_fit(func, xdata=x,ydata=y,p0=init_guess)
这是一个简短的例子
xdata = np.linspace(0, 4, 50)
mygauss = ( 10,2,0.5) #( amp, center, width)
y = func(xdata, *mygauss ) # using your func defined above
ydata = y + 2*(np.random.random(50)- 0.5) # add some noise to create fake data
现在我可以猜出合适的参数了
ai = np.max( ydata) # guess the amplitude
xi = xdata[ np.argmax( ydata)] # guess the position of center
估计宽度比较棘手,我会先找到半最大值所在的位置(有两个,但你只需要找到一个,因为高斯是对称的):
pos_half = argmin( np.abs( ydata-ao/2 ) ) # subtract half the amplitude and find the minimum
现在评估它与高斯 (xi) 中心的距离:
sig_i = np.abs( xi - xdata[ pos_half] ) # estimate the width
现在您可以进行初步猜测了
init_guess = (ai, xi sig_i)
适合
params, variance = curve_fit( func, xdata=xdata, ydata=ydata, p0=init_guess)
print params
#array([ 9.99457443, 2.01992858, 0.49599629])
非常接近 mygauss
。希望对你有帮助。
忘记重新缩放,或进行线性更改,或使用 p0 参数,这些通常不起作用!尝试使用 curve_fit 中的 bounds 参数作为 n 个参数,如下所示:
a0=np.array([a01,...,a0n])
af=np.array([af1,...,afn])
method="trf",bounds=(a0,af)
希望有用!
;)
我正在尝试将高斯分布拟合到光谱中,y 值大约为 10^(-19)。 Curve_fit 在我将整个数据乘以 10^(-19) 之前和之后给我的拟合结果都很差。附件是我的代码,它是一组相当简单的数据,只是值非常小。如果我想保留我的原始值,我将如何获得合理的高斯拟合来给我正确的参数?
#get fits data
aaa=pyfits.getdata('p1.cal.fits')
aaa=np.matrix(aaa)
nrow=np.shape(aaa)[0]
ncol=np.shape(aaa)[1]
ylo=79
yhi=90
xlo=0
xhi=1023
glo=430
ghi=470
#sum all the rows to get spectrum
ysum=[]
for x in range(xlo,xhi):
sum=np.sum(aaa[ylo:yhi,x])
ysum.append(sum)
wavelen_pix=range(xhi-xlo)
max=np.max(ysum)
print "maximum is at x=", np.where(ysum==max)
##fit gaussian
#fit only part of my data in the chosen range [glo:ghi]
x=wavelen_pix[glo:ghi]
y=ysum[glo:ghi]
def func(x, a, x0, sigma):
return a*np.exp(-(x-x0)**2/float((2*sigma**2)))
sig=np.std(ysum[500:1000]) #std of background noise
popt, pcov = curve_fit(func, x, sig)
print popt
#this gives me [1.,1.,1.], which is obviously wrong
gaus=func(x,popt[0],popt[1],popt[2])
aaa 是一个 153 x 1024 的图像矩阵,部分如下所示:
matrix([[ -8.99793629e-20, 8.57133275e-21, 4.83523386e-20, ...,
-1.54811004e-20, 5.22941515e-20, 1.71179195e-20],
[ 2.75769318e-20, 1.03177243e-20, -3.19634928e-21, ...,
1.66583803e-20, -9.88712568e-22, -2.56897725e-20],
[ 2.88121935e-20, 8.57964252e-21, -2.60784327e-20, ...,
1.72335180e-20, -7.61189937e-21, -3.45333075e-20],
...,
[ 1.04006903e-20, 1.61200683e-20, 7.04195205e-20, ...,
1.72459645e-20, 4.29404029e-20, 1.99889374e-20],
[ 3.22315752e-21, -5.61394194e-21, 3.28763096e-20, ...,
1.99063583e-20, 2.12989880e-20, -1.23250648e-21],
[ 3.66591810e-20, -8.08647455e-22, -6.22773168e-20, ...,
-4.06145681e-21, 4.92453132e-21, 4.23689309e-20]], dtype=float32)
你叫错了curve_fit
,这里是用法
curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, **kw)
- f 是你的函数,它的第一个 arg 是自变量数组,其后续 args 是函数参数(例如幅度,中心等)
- xdata是自变量
- ydata 是因变量
- p0 是对函数参数的初始猜测(对于高斯,这是振幅、宽度、中心)
默认情况下,p0 设置为 [1,1,...] 的列表,这可能就是为什么你会得到这个结果,因为你调用它不正确,所以拟合从未执行过。
尝试根据数据估计振幅、中心和宽度,然后制作一个 p0 对象(详见下文)
init_guess = ( a_i, x0_i, sig_i) # same order as they are supplied to your function
popt, pcov = curve_fit(func, xdata=x,ydata=y,p0=init_guess)
这是一个简短的例子
xdata = np.linspace(0, 4, 50)
mygauss = ( 10,2,0.5) #( amp, center, width)
y = func(xdata, *mygauss ) # using your func defined above
ydata = y + 2*(np.random.random(50)- 0.5) # add some noise to create fake data
现在我可以猜出合适的参数了
ai = np.max( ydata) # guess the amplitude
xi = xdata[ np.argmax( ydata)] # guess the position of center
估计宽度比较棘手,我会先找到半最大值所在的位置(有两个,但你只需要找到一个,因为高斯是对称的):
pos_half = argmin( np.abs( ydata-ao/2 ) ) # subtract half the amplitude and find the minimum
现在评估它与高斯 (xi) 中心的距离:
sig_i = np.abs( xi - xdata[ pos_half] ) # estimate the width
现在您可以进行初步猜测了
init_guess = (ai, xi sig_i)
适合
params, variance = curve_fit( func, xdata=xdata, ydata=ydata, p0=init_guess)
print params
#array([ 9.99457443, 2.01992858, 0.49599629])
非常接近 mygauss
。希望对你有帮助。
忘记重新缩放,或进行线性更改,或使用 p0 参数,这些通常不起作用!尝试使用 curve_fit 中的 bounds 参数作为 n 个参数,如下所示:
a0=np.array([a01,...,a0n])
af=np.array([af1,...,afn])
method="trf",bounds=(a0,af)
希望有用! ;)