用不同的数字在数据框中填充 NaN

Fill NaNs in dataframe with different numbers

我有一个 df:

df = pd.DataFrame({'Col1': [np.NaN, 1, 2], 'Col2': [7, 9, np.NaN], 'Col3': [np.NaN, np.NaN, 5]})

如何用 df 中不存在的随机唯一数字替换 df 中的每个 NaN,例如:

df = pd.DataFrame({'Col1': [8, 1, 2], 'Col2': [7, 9, 11], 'Col3': [30, 33, 5]})

非常感谢。

一种方法是用相同大小的随机数 df 进行掩码:

import random
total_size = df.shape[0]*df.shape[1]
rands = [x for x in random.sample(range(total_size*10), total_size*2) if x not in df.values][:total_size]
rands_mat = np.array(rands).reshape((df.shape))
df.mask(pd.isnull(df), rands_mat)
Col1 Col2 Col3
0 4 7 23
1 1 9 19
2 2 71 5