最大化 Collat​​z 猜想程序的效率 Python

Maximizing Efficiency of Collatz Conjecture Program Python

我的问题很简单

我写这个程序纯粹是为了娱乐。它需要一个数字输入并找到每个 Collat​​z 序列的长度,直到并包括该数字。

我想在算法上或数学上让它更快(即我知道我可以通过 运行 多个并行版本或用 C++ 编写它来让它更快,但那有什么乐趣呢?)。

欢迎任何帮助,谢谢!

编辑: 在 dankal444

的帮助下进一步优化代码
from matplotlib import pyplot as plt
import numpy as np
import numba as nb

# Get Range to Check
top_range = int(input('Top Range: '))

@nb.njit('int64[:](int_)')
def collatz(top_range):
    # Initialize mem
    mem = np.zeros(top_range + 1, dtype = np.int64)
    for start in range(2, top_range + 1):
        # If mod4 == 1: (3x + 1)/4
        if start % 4 == 1:
            mem[start] = mem[(start + (start >> 1) + 1) // 2] + 3
        
        # If 4mod == 3: 3(3x + 1) + 1 and continue
        elif start % 4 == 3:
            num = start + (start >> 1) + 1
            num += (num >> 1) + 1
            count = 4

            while num >= start:
                if num % 2:
                    num += (num >> 1) + 1
                    count += 2
                else:
                    num //= 2
                    count += 1
            mem[start] = mem[num] + count

        # If 4mod == 2 or 0: x/2
        else:
            mem[start] = mem[(start // 2)] + 1

    return mem

mem = collatz(top_range)

# Plot each starting number with the length of it's sequence
plt.scatter([*range(1, len(mem) + 1)], mem, color = 'black', s = 1)
plt.show()

在您的代码中应用 numba 确实有很大帮助。

我删除了 tqdm,因为它对性能没有帮助。

import time
from matplotlib import pyplot as plt
from tqdm import tqdm

import numpy as np
import numba as nb
@nb.njit('int64[:](int_)')
def collatz2(top_range):
    mem = np.zeros(top_range + 1, dtype=np.int64)
    for start in range(2, top_range + 1):
        # If mod(4) == 1: Value 2 or 3 Cached
        if start % 4 == 1:
            mem[start] = mem[(start + (start >> 1) + 1) // 2] + 3
        # If mod(4) == 3: Use Algorithm
        elif start % 4 == 3:
            num = start
            count = 0
            while num >= start:
                if num % 2:
                    num += (num >> 1) + 1
                    count += 2
                else:
                    num //= 2
                    count += 1
            mem[start] = mem[num] + count
        # If mod(4) == 2 or 4: Value 1 Cached
        else:
            mem[start] = mem[(start // 2)] + 1
    return mem


def collatz(top_range):
    mem = [0] * (top_range + 1)
    for start in range(2, top_range + 1):
        # If mod(4) == 1: Value 2 or 3 Cached
        if start % 4 == 1:
            mem[start] = mem[(start + (start >> 1) + 1) // 2] + 3
        # If mod(4) == 3: Use Algorithm
        elif start % 4 == 3:
            num = start
            count = 0
            while num >= start:
                if num % 2:
                    num += (num >> 1) + 1
                    count += 2
                else:
                    num //= 2
                    count += 1
            mem[start] = mem[num] + count
        # If mod(4) == 2 or 4: Value 1 Cached
        else:
            mem[start] = mem[(start // 2)] + 1
    return mem

# profiling here
def main():

    top_range = 1_000_000
    mem = collatz(top_range)
    mem2 = collatz2(top_range)
    assert np.allclose(np.array(mem), mem2)


对于 top_range = 1_000 优化函数快了约 100 倍。对于 top_range = 1_000_000,优化后的函数快了大约 600 倍:

    79                                           def main():
    81         1          3.0      3.0      0.0      top_range = 1_000_000
    83         1   24633045.0 24633045.0     98.7      mem = collatz(top_range)
    85         1      39311.0  39311.0      0.2      mem2 = collatz2(top_range)