如何在分组密度图上添加中值?
How to add median values on top of a grouped density plot?
如果之前有人问过这个问题,我深表歉意。我正在尝试将中值添加到 grouped
密度图的峰值(下面的示例)。
library(dplyr)
library(forcats)
Catalan_elections %>%
mutate(YearFct = fct_rev(as.factor(Year))) %>%
ggplot(aes(y = YearFct)) +
geom_density_ridges(
aes(x = Percent, fill = paste(YearFct, Option)),
alpha = .8, color = "white", from = 0, to = 100
) +
labs(
x = "Vote (%)",
y = "Election Year",
title = "Indy vs Unionist vote in Catalan elections",
subtitle = "Analysis unit: municipalities (n = 949)",
caption = "Marc Belzunces (@marcbeldata) | Source: Idescat"
) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
scale_fill_cyclical(
breaks = c("1980 Indy", "1980 Unionist"),
labels = c(`1980 Indy` = "Indy", `1980 Unionist` = "Unionist"),
values = c("#ff0000", "#0000ff", "#ff8080", "#8080ff"),
name = "Option", guide = "legend"
) +
coord_cartesian(clip = "off") +
theme_ridges(grid = FALSE)
编辑:
感谢您更新您的问题;我误解并认为你想突出显示中位数(直截了当),但听起来你实际上想要峰值(更复杂)。我还认为这是你的代码,而不是来自 https://cran.r-project.org/web/packages/ggridges/vignettes/gallery.html 的示例,所以我没有意识到 Catalan_elections 数据集是公开可用的(例如来自 ggjoy 包)。
这里有一个更相关的解决方案:
library(tidyverse)
library(palmerpenguins)
library(ggridges)
#install.packages("ggjoy")
library(ggjoy)
Catalan_elections_with_max_density <- Catalan_elections %>%
group_by(Year, Option) %>%
na.omit() %>%
mutate(max_density = max(density(Percent, na.rm = TRUE)$y),
which_max_density = which.max(density(Percent, na.rm = TRUE)$y)) %>%
mutate(which_max_x_intercept = density(Percent, na.rm = TRUE)$x[which_max_density])
Catalan_elections_with_max_density %>%
mutate(YearFct = fct_rev(as.factor(Year))) %>%
ggplot(aes(y = YearFct)) +
geom_density_ridges(
aes(x = Percent, fill = paste(YearFct, Option)),
alpha = .8, color = "white", from = 0, to = 100,
) +
geom_segment(aes(x = which_max_x_intercept,
xend = which_max_x_intercept,
y = as.numeric(YearFct),
yend = as.numeric(YearFct) + max_density * 48),
color = "white", size = 0.75, alpha = 0.1) +
labs(
x = "Vote (%)",
y = "Election Year",
title = "Indy vs Unionist vote in Catalan elections",
subtitle = "Analysis unit: municipalities (n = 949)",
caption = "Marc Belzunces (@marcbeldata) | Source: Idescat"
) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
scale_fill_cyclical(
breaks = c("1980 Indy", "1980 Unionist"),
labels = c(`1980 Indy` = "Indy", `1980 Unionist` = "Unionist"),
values = c("#ff0000", "#0000ff", "#ff8080", "#8080ff"),
name = "Option", guide = "legend"
) +
coord_cartesian(clip = "off") +
theme_ridges(grid = FALSE)
#> Picking joint bandwidth of 3.16
由 reprex package (v2.0.1)
于 2021-12-14 创建
注意。我真的不明白 geom_density_ridges() 中的缩放是如何工作的,所以我使用“max_density * 一个常数”来让它大致正确。根据您的用例,您需要调整常量或计算出峰值密度与图的 y 坐标的关系。
原回答:
我没有你的数据集“Catalan_elections”,所以这是一个使用 palmerpenguins dataset:
的例子
library(tidyverse)
library(palmerpenguins)
library(ggridges)
penguins %>%
na.omit() %>%
mutate(YearFct = fct_rev(as.factor(year))) %>%
ggplot(aes(x = bill_length_mm, y = YearFct, fill = YearFct)) +
geom_density_ridges(
alpha = .8, color = "white", from = 0, to = 100,
quantile_lines = TRUE, quantiles = 2
) +
labs(
x = "Vote (%)",
y = "Election Year",
title = "Indy vs Unionist vote in Catalan elections",
subtitle = "Analysis unit: municipalities (n = 949)",
caption = "Marc Belzunces (@marcbeldata) | Source: Idescat"
) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
scale_fill_cyclical(
breaks = c("1980 Indy", "1980 Unionist"),
labels = c(`1980 Indy` = "Indy", `1980 Unionist` = "Unionist"),
values = c("#ff0000", "#0000ff", "#ff8080", "#8080ff"),
name = "Option", guide = "legend"
) +
coord_cartesian(clip = "off") +
theme_ridges(grid = FALSE)
#> Picking joint bandwidth of 1.92
由 reprex package (v2.0.1)
于 2021-12-13 创建
如果之前有人问过这个问题,我深表歉意。我正在尝试将中值添加到 grouped
密度图的峰值(下面的示例)。
library(dplyr)
library(forcats)
Catalan_elections %>%
mutate(YearFct = fct_rev(as.factor(Year))) %>%
ggplot(aes(y = YearFct)) +
geom_density_ridges(
aes(x = Percent, fill = paste(YearFct, Option)),
alpha = .8, color = "white", from = 0, to = 100
) +
labs(
x = "Vote (%)",
y = "Election Year",
title = "Indy vs Unionist vote in Catalan elections",
subtitle = "Analysis unit: municipalities (n = 949)",
caption = "Marc Belzunces (@marcbeldata) | Source: Idescat"
) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
scale_fill_cyclical(
breaks = c("1980 Indy", "1980 Unionist"),
labels = c(`1980 Indy` = "Indy", `1980 Unionist` = "Unionist"),
values = c("#ff0000", "#0000ff", "#ff8080", "#8080ff"),
name = "Option", guide = "legend"
) +
coord_cartesian(clip = "off") +
theme_ridges(grid = FALSE)
编辑:
感谢您更新您的问题;我误解并认为你想突出显示中位数(直截了当),但听起来你实际上想要峰值(更复杂)。我还认为这是你的代码,而不是来自 https://cran.r-project.org/web/packages/ggridges/vignettes/gallery.html 的示例,所以我没有意识到 Catalan_elections 数据集是公开可用的(例如来自 ggjoy 包)。
这里有一个更相关的解决方案:
library(tidyverse)
library(palmerpenguins)
library(ggridges)
#install.packages("ggjoy")
library(ggjoy)
Catalan_elections_with_max_density <- Catalan_elections %>%
group_by(Year, Option) %>%
na.omit() %>%
mutate(max_density = max(density(Percent, na.rm = TRUE)$y),
which_max_density = which.max(density(Percent, na.rm = TRUE)$y)) %>%
mutate(which_max_x_intercept = density(Percent, na.rm = TRUE)$x[which_max_density])
Catalan_elections_with_max_density %>%
mutate(YearFct = fct_rev(as.factor(Year))) %>%
ggplot(aes(y = YearFct)) +
geom_density_ridges(
aes(x = Percent, fill = paste(YearFct, Option)),
alpha = .8, color = "white", from = 0, to = 100,
) +
geom_segment(aes(x = which_max_x_intercept,
xend = which_max_x_intercept,
y = as.numeric(YearFct),
yend = as.numeric(YearFct) + max_density * 48),
color = "white", size = 0.75, alpha = 0.1) +
labs(
x = "Vote (%)",
y = "Election Year",
title = "Indy vs Unionist vote in Catalan elections",
subtitle = "Analysis unit: municipalities (n = 949)",
caption = "Marc Belzunces (@marcbeldata) | Source: Idescat"
) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
scale_fill_cyclical(
breaks = c("1980 Indy", "1980 Unionist"),
labels = c(`1980 Indy` = "Indy", `1980 Unionist` = "Unionist"),
values = c("#ff0000", "#0000ff", "#ff8080", "#8080ff"),
name = "Option", guide = "legend"
) +
coord_cartesian(clip = "off") +
theme_ridges(grid = FALSE)
#> Picking joint bandwidth of 3.16
由 reprex package (v2.0.1)
于 2021-12-14 创建注意。我真的不明白 geom_density_ridges() 中的缩放是如何工作的,所以我使用“max_density * 一个常数”来让它大致正确。根据您的用例,您需要调整常量或计算出峰值密度与图的 y 坐标的关系。
原回答:
我没有你的数据集“Catalan_elections”,所以这是一个使用 palmerpenguins dataset:
的例子library(tidyverse)
library(palmerpenguins)
library(ggridges)
penguins %>%
na.omit() %>%
mutate(YearFct = fct_rev(as.factor(year))) %>%
ggplot(aes(x = bill_length_mm, y = YearFct, fill = YearFct)) +
geom_density_ridges(
alpha = .8, color = "white", from = 0, to = 100,
quantile_lines = TRUE, quantiles = 2
) +
labs(
x = "Vote (%)",
y = "Election Year",
title = "Indy vs Unionist vote in Catalan elections",
subtitle = "Analysis unit: municipalities (n = 949)",
caption = "Marc Belzunces (@marcbeldata) | Source: Idescat"
) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
scale_fill_cyclical(
breaks = c("1980 Indy", "1980 Unionist"),
labels = c(`1980 Indy` = "Indy", `1980 Unionist` = "Unionist"),
values = c("#ff0000", "#0000ff", "#ff8080", "#8080ff"),
name = "Option", guide = "legend"
) +
coord_cartesian(clip = "off") +
theme_ridges(grid = FALSE)
#> Picking joint bandwidth of 1.92
由 reprex package (v2.0.1)
于 2021-12-13 创建