找到范围内符合条件的最大元素
Find the biggest element in range that matches condition
假设我有整数范围 [l, r) 和满足以下条件的函数 check(int idx)
:
有一个索引 t (l <= t < r) 使得对于每个 i (l <= i <= t) check(i) == true
和每个 j (t < j < r) check(j) == false
。有没有找到索引 t 的标准方法?
标准 binary_search()
需要带有两个参数的比较器,因此不能在此处应用(如果我错了请纠正我)。
假设您正在搜索一个连续的整数范围(而不是,例如,索引数组),我建议使用二分法搜索:
int find_t(int l, int r) {
// Preconditions
assert(check(l) == true);
//assert(check(r) == false); // this precondition is not mandatory
int max_idx_true = l; // highest known integer which satisfies check(idx) == true
int min_idx_false = r; // lowest known integer which satisfies check(idx) == false
while (max_idx_true+1 < min_idx_false) {
int mid_idx = (max_idx_true+min_idx_false)/2;
if (check(mid_idx)) max_idx_true = mid_idx;
else min_idx_false = mid_idx;
}
int t = max_idx_true;
// Postconditions
assert(check(t) == true);
assert(t+1 == r || check(t+1) == false);
return t;
}
此算法缩小了最接近的整数,其中 check(idx) 为真而下一个为假。在您的情况下,您正在寻找对应于 max_idx_true
.
的 t
需要注意的是,必须满足以下先决条件才能工作:
l
< r
check(l)
为真
- 对于任何
idx
,如果 check(idx)
为真则 check(idx-1)
始终为真
- 对于任何
idx
,如果 check(idx)
为假,则 check(idx+1)
始终为假
下面是用于测试算法和输出行的源代码示例,以更好地理解其工作原理。您也可以 try it out here.
#include <iostream>
#include <cassert>
using namespace std;
// Replace this function by your own check
bool check(int idx) {
return idx <= 42;
}
int find_t(int l, int r) {
assert(check(l) == true);
//assert(check(r) == false); // this precondition is not mandatory
int max_idx_true = l; // highest known integer which satisfies check(idx) == true
int min_idx_false = r; // lowest known integer which satisfies check(idx) == false
int n = 0; // Number of iterations, not needed but helps analyzing the complexity
while (max_idx_true+1 < min_idx_false) {
++n;
int mid_idx = (max_idx_true+min_idx_false)/2;
// Analyze the algorithm in detail
cerr << "Iteration #" << n;
cerr << " in range [" << max_idx_true << ", " << min_idx_false << ")";
cerr << " the midpoint " << mid_idx << " is " << boolalpha << check(mid_idx) << noboolalpha;
cerr << endl;
if (check(mid_idx)) max_idx_true = mid_idx;
else min_idx_false = mid_idx;
}
int t = max_idx_true;
assert(check(t) == true);
assert(t+1 == r || check(t+1) == false);
return t;
}
int main() {
// Initial constants
int l = 0;
int r = 100;
int t = find_t(l, r);
cout << "The answer is " << t << endl;
return 0;
}
二分法搜索的主要优点是它找到你的候选人的复杂度仅为 O(log2(N))。
例如,如果您初始化 int l = -2000000000
和 int r = 2000000000
(+/- 20 亿),您需要知道大约 40 亿个数字的答案,但迭代次数将为 32 at worst.
假设我有整数范围 [l, r) 和满足以下条件的函数 check(int idx)
:
有一个索引 t (l <= t < r) 使得对于每个 i (l <= i <= t) check(i) == true
和每个 j (t < j < r) check(j) == false
。有没有找到索引 t 的标准方法?
标准 binary_search()
需要带有两个参数的比较器,因此不能在此处应用(如果我错了请纠正我)。
假设您正在搜索一个连续的整数范围(而不是,例如,索引数组),我建议使用二分法搜索:
int find_t(int l, int r) {
// Preconditions
assert(check(l) == true);
//assert(check(r) == false); // this precondition is not mandatory
int max_idx_true = l; // highest known integer which satisfies check(idx) == true
int min_idx_false = r; // lowest known integer which satisfies check(idx) == false
while (max_idx_true+1 < min_idx_false) {
int mid_idx = (max_idx_true+min_idx_false)/2;
if (check(mid_idx)) max_idx_true = mid_idx;
else min_idx_false = mid_idx;
}
int t = max_idx_true;
// Postconditions
assert(check(t) == true);
assert(t+1 == r || check(t+1) == false);
return t;
}
此算法缩小了最接近的整数,其中 check(idx) 为真而下一个为假。在您的情况下,您正在寻找对应于 max_idx_true
.
需要注意的是,必须满足以下先决条件才能工作:
l
<r
check(l)
为真- 对于任何
idx
,如果check(idx)
为真则check(idx-1)
始终为真 - 对于任何
idx
,如果check(idx)
为假,则check(idx+1)
始终为假
下面是用于测试算法和输出行的源代码示例,以更好地理解其工作原理。您也可以 try it out here.
#include <iostream>
#include <cassert>
using namespace std;
// Replace this function by your own check
bool check(int idx) {
return idx <= 42;
}
int find_t(int l, int r) {
assert(check(l) == true);
//assert(check(r) == false); // this precondition is not mandatory
int max_idx_true = l; // highest known integer which satisfies check(idx) == true
int min_idx_false = r; // lowest known integer which satisfies check(idx) == false
int n = 0; // Number of iterations, not needed but helps analyzing the complexity
while (max_idx_true+1 < min_idx_false) {
++n;
int mid_idx = (max_idx_true+min_idx_false)/2;
// Analyze the algorithm in detail
cerr << "Iteration #" << n;
cerr << " in range [" << max_idx_true << ", " << min_idx_false << ")";
cerr << " the midpoint " << mid_idx << " is " << boolalpha << check(mid_idx) << noboolalpha;
cerr << endl;
if (check(mid_idx)) max_idx_true = mid_idx;
else min_idx_false = mid_idx;
}
int t = max_idx_true;
assert(check(t) == true);
assert(t+1 == r || check(t+1) == false);
return t;
}
int main() {
// Initial constants
int l = 0;
int r = 100;
int t = find_t(l, r);
cout << "The answer is " << t << endl;
return 0;
}
二分法搜索的主要优点是它找到你的候选人的复杂度仅为 O(log2(N))。
例如,如果您初始化 int l = -2000000000
和 int r = 2000000000
(+/- 20 亿),您需要知道大约 40 亿个数字的答案,但迭代次数将为 32 at worst.