如何基于交叉验证在 R 中可视化我的 RF 模型的性能?
How to visualise my RF model's performance in R, based on the cross-validation?
我有以下示例的模型,我想通过 k 折显示其稳定性和 consistency/performance。为此,最好的 visualization/interpretation 是什么?
data(iris)
mydf=iris[,1:4]
control = trainControl(method="repeatedcv", number=5,repeats=5,savePredictions = TRUE)
for_train = createDataPartition(mydf$Sepal.Length, p=.66, list=FALSE)
train=mydf[for_train,]
test=mydf[-for_train,]
mytrf_iris = train(Sepal.Length~ .,
data=train,ntree=800,method="rf",metric="Rsquared",trControl=control,importance = TRUE)
library(caret)
#> Loading required package: lattice
#> Loading required package: ggplot2
library(tidyverse)
data(iris)
mydf <- iris[, 1:4]
control <- trainControl(method = "repeatedcv", number = 5, repeats = 5, savePredictions = TRUE)
for_train <- createDataPartition(mydf$Sepal.Length, p = .66, list = FALSE)
train <- mydf[for_train, ]
test <- mydf[-for_train, ]
mytrf_iris <- train(Sepal.Length ~ .,
data = train, ntree = 800, method = "rf", metric = "Rsquared", trControl = control, importance = TRUE
)
#> note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .
plot(mytrf_iris)
mytrf_iris$results
#> mtry RMSE Rsquared MAE RMSESD RsquaredSD MAESD
#> 1 2 0.3173592 0.8673463 0.2684422 0.02888781 0.03709340 0.02502770
#> 2 3 0.3067187 0.8730667 0.2582250 0.02850211 0.03610797 0.02556025
mytrf_iris$resample %>%
pivot_longer(-Resample) %>%
qplot(name, value, geom = "boxplot", data = .)
由 reprex package (v2.0.1)
于 2021-12-15 创建
我有以下示例的模型,我想通过 k 折显示其稳定性和 consistency/performance。为此,最好的 visualization/interpretation 是什么?
data(iris)
mydf=iris[,1:4]
control = trainControl(method="repeatedcv", number=5,repeats=5,savePredictions = TRUE)
for_train = createDataPartition(mydf$Sepal.Length, p=.66, list=FALSE)
train=mydf[for_train,]
test=mydf[-for_train,]
mytrf_iris = train(Sepal.Length~ .,
data=train,ntree=800,method="rf",metric="Rsquared",trControl=control,importance = TRUE)
library(caret)
#> Loading required package: lattice
#> Loading required package: ggplot2
library(tidyverse)
data(iris)
mydf <- iris[, 1:4]
control <- trainControl(method = "repeatedcv", number = 5, repeats = 5, savePredictions = TRUE)
for_train <- createDataPartition(mydf$Sepal.Length, p = .66, list = FALSE)
train <- mydf[for_train, ]
test <- mydf[-for_train, ]
mytrf_iris <- train(Sepal.Length ~ .,
data = train, ntree = 800, method = "rf", metric = "Rsquared", trControl = control, importance = TRUE
)
#> note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .
plot(mytrf_iris)
mytrf_iris$results
#> mtry RMSE Rsquared MAE RMSESD RsquaredSD MAESD
#> 1 2 0.3173592 0.8673463 0.2684422 0.02888781 0.03709340 0.02502770
#> 2 3 0.3067187 0.8730667 0.2582250 0.02850211 0.03610797 0.02556025
mytrf_iris$resample %>%
pivot_longer(-Resample) %>%
qplot(name, value, geom = "boxplot", data = .)
由 reprex package (v2.0.1)
于 2021-12-15 创建