如何修复 Pulp 约束中的 Traceback(最近调用最后一次)错误
How can I fix a Traceback (most recent call last) error in a Pulp constraint
我正在尝试使用 for 循环向这个线性优化问题添加约束。约束是... x1A + x1B + x1C + x1D = 1, x2A + x2B + x2C + x2D = 1, 等等...
Traceback 错误发生在循环的第一个 运行 处,我正在努力找出原因。任何帮助将不胜感激!
problem2 = LpProblem("Problem_2",LpMinimize)
Letter=['A','B','C','D']
Number=['1','2','3','4']
NumArray = [185,225,193,207],[200,190,175,225],[330,320,315,300],[375,389,425,445]
NumArray=makeDict([Number,Letter], NumArray)
[problem2_vars = LpVariable.dicts("x",(Number, Letter),lowBound=0,cat='Binary')
problem2_vars\['1'\]\['A'\]
problem2 += lpSum(\[problem2_vars\[i\]\[j\]*NumArray\[i\]\[j\] for i in Number for j in Letter\])
for j in Number:
problem2 += lpSum(\[problem2_vars\[j,'A'\]\]) == 1,"%s"%j][1]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-31-04a89d6c02e1> in <module>
2
3 for j in Number[0:]:
----> 4 problem2 += lpSum([problem2_vars[j,'A']]) == 1,"%s"%j
KeyError: ('1', 'A')
一小段代码中包含了很多语法问题! :)
几点建议:
- 为什么要用反斜杠“转义”所有内容?
- 您不需要将变量放在列表中...不清楚您在其中使用列表括号等做什么
- 您的错误的主要问题是您没有将要使用的 索引 列表传递给
LpVariable.dicts
。您只是传入一个包含两个列表的元组。
以后,请尝试像我在下面的示例中那样打印您的模型,看看到底在构造什么。如果您 google pulp
示例(或查看本网站上标记的许多示例),我认为您可以避免一些语法混乱。祝你好运!
from pulp import *
p2 = LpProblem("p2", LpMinimize)
# data
ltrs = ['A', 'B']
nums = [1, 2]
coefs = { ('A', 1): 22,
('A', 2): 42,
('B', 1): 7,
('B', 2): 79}
x = LpVariable.dicts('x', indexs=coefs.keys(), cat='Binary')
# objective
p2 += lpSum(x[ltr, num] * coefs[ltr, num] for (ltr, num) in coefs.keys())
# constraint
for num in nums:
p2 += lpSum(x[ltr, num] for ltr in ltrs) == 1
sol = p2.solve()
print(p2)
print(sol)
产量:
...
Result - Optimal solution found
Objective value: 49.00000000
Enumerated nodes: 0
Total iterations: 0
Time (CPU seconds): 0.00
Time (Wallclock seconds): 0.00
Option for printingOptions changed from normal to all
Total time (CPU seconds): 0.00 (Wallclock seconds): 0.00
p2:
MINIMIZE
22*x_('A',_1) + 42*x_('A',_2) + 7*x_('B',_1) + 79*x_('B',_2) + 0
SUBJECT TO
_C1: x_('A',_1) + x_('B',_1) = 1
_C2: x_('A',_2) + x_('B',_2) = 1
VARIABLES
0 <= x_('A',_1) <= 1 Integer
0 <= x_('A',_2) <= 1 Integer
0 <= x_('B',_1) <= 1 Integer
0 <= x_('B',_2) <= 1 Integer
1
[Finished in 242ms]
我正在尝试使用 for 循环向这个线性优化问题添加约束。约束是... x1A + x1B + x1C + x1D = 1, x2A + x2B + x2C + x2D = 1, 等等...
Traceback 错误发生在循环的第一个 运行 处,我正在努力找出原因。任何帮助将不胜感激!
problem2 = LpProblem("Problem_2",LpMinimize)
Letter=['A','B','C','D']
Number=['1','2','3','4']
NumArray = [185,225,193,207],[200,190,175,225],[330,320,315,300],[375,389,425,445]
NumArray=makeDict([Number,Letter], NumArray)
[problem2_vars = LpVariable.dicts("x",(Number, Letter),lowBound=0,cat='Binary')
problem2_vars\['1'\]\['A'\]
problem2 += lpSum(\[problem2_vars\[i\]\[j\]*NumArray\[i\]\[j\] for i in Number for j in Letter\])
for j in Number:
problem2 += lpSum(\[problem2_vars\[j,'A'\]\]) == 1,"%s"%j][1]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-31-04a89d6c02e1> in <module>
2
3 for j in Number[0:]:
----> 4 problem2 += lpSum([problem2_vars[j,'A']]) == 1,"%s"%j
KeyError: ('1', 'A')
一小段代码中包含了很多语法问题! :)
几点建议:
- 为什么要用反斜杠“转义”所有内容?
- 您不需要将变量放在列表中...不清楚您在其中使用列表括号等做什么
- 您的错误的主要问题是您没有将要使用的 索引 列表传递给
LpVariable.dicts
。您只是传入一个包含两个列表的元组。
以后,请尝试像我在下面的示例中那样打印您的模型,看看到底在构造什么。如果您 google pulp
示例(或查看本网站上标记的许多示例),我认为您可以避免一些语法混乱。祝你好运!
from pulp import *
p2 = LpProblem("p2", LpMinimize)
# data
ltrs = ['A', 'B']
nums = [1, 2]
coefs = { ('A', 1): 22,
('A', 2): 42,
('B', 1): 7,
('B', 2): 79}
x = LpVariable.dicts('x', indexs=coefs.keys(), cat='Binary')
# objective
p2 += lpSum(x[ltr, num] * coefs[ltr, num] for (ltr, num) in coefs.keys())
# constraint
for num in nums:
p2 += lpSum(x[ltr, num] for ltr in ltrs) == 1
sol = p2.solve()
print(p2)
print(sol)
产量:
...
Result - Optimal solution found
Objective value: 49.00000000
Enumerated nodes: 0
Total iterations: 0
Time (CPU seconds): 0.00
Time (Wallclock seconds): 0.00
Option for printingOptions changed from normal to all
Total time (CPU seconds): 0.00 (Wallclock seconds): 0.00
p2:
MINIMIZE
22*x_('A',_1) + 42*x_('A',_2) + 7*x_('B',_1) + 79*x_('B',_2) + 0
SUBJECT TO
_C1: x_('A',_1) + x_('B',_1) = 1
_C2: x_('A',_2) + x_('B',_2) = 1
VARIABLES
0 <= x_('A',_1) <= 1 Integer
0 <= x_('A',_2) <= 1 Integer
0 <= x_('B',_1) <= 1 Integer
0 <= x_('B',_2) <= 1 Integer
1
[Finished in 242ms]