根据另一列中的值创建新的指标列

Create new indicator columns based on values in another column

我有一些数据如下所示:

import pandas as pd

fruits = ['apple', 'pear', 'peach']

df = pd.DataFrame({'col1':['i want an apple', 'i hate pears', 'please buy a peach and an apple', 'I want squash']})

print(df.head())

                              col1
0                  i want an apple
1                     i hate pears
2  please buy a peach and an apple
3                    I want squash

我需要一个解决方案,为 fruits 中的每个项目创建一个列,并给出一个 1 或 0 值来指示 col 是否包含该值。理想情况下,输出将如下所示:

goal_df = pd.DataFrame({'col1':['i want an apple', 'i hate pears', 'please buy a peach and an apple', 'I want squash'],
                        'apple': [1, 0, 1, 0],
                        'pear': [0, 1, 0, 0],
                        'peach': [0, 0, 1, 0]})

print(goal_df.head())


                              col1  apple  pear  peach
0                  i want an apple      1     0      0
1                     i hate pears      0     1      0
2  please buy a peach and an apple      1     0      1
3                    I want squash      0     0      0

我试过了,但没用:

for i in fruits:
    if df['col1'].str.contains(i):
        df[i] = 1
    else:
        df[i] = 0

您可以将下面的内容用于 apple 列,对其他人也可以这样做

def has_apple(st):
    if "apple" in st.lower():
        return 1
    return 0
df['apple'] = df['col1'].apply(has_apple)
items = ['apple', 'pear', 'peach']
for it in items:
    df[it] = df['col1'].str.contains(it, case=False).astype(int)

输出:

>>> df
                              col1  apple  pear  peach
0                  i want an apple      1     0      0
1                     i hate pears      0     1      0
2  please buy a peach and an apple      1     0      1
3                    I want squash      0     0      0

使用str.extractall提取单词,然后pd.crosstab:

pattern = f"({'|'.join(fruits)})"
s = df['col1'].str.extractall(pattern)
df[fruits] = (pd.crosstab(s.index.get_level_values(0), s[0].values)
                .re_index(index=df.index, columns=fruits, fill_value=0)
             )

输出:

                              col1  apple  pear  peach
0                  i want an apple      1     0      0
1                     i hate pears      0     1      0
2  please buy a peach and an apple      1     0      1
3                    I want squash      0     0      0

尝试使用 numpy 库中的 np.where

fruit = ['apple', 'pear', 'peach']
    for i in fruit:
        df[i] = np.where(df.col1.str.contains(i), 1, 0)

尝试:

  1. 使用str.extractall
  2. 获取所有匹配的水果
  3. 使用pd.get_dummies获取指标值
  4. join 到原始 DataFrame
matches = pd.get_dummies(df["col1"].str.extractall(f"({'|'.join(fruits)})")[0].droplevel(1, 0))
output = df.join(matches.groupby(level=0).sum()).fillna(0)

>>> output
                              col1  apple  peach  pear
0                  i want an apple    1.0    0.0   0.0
1                     i hate pears    0.0    0.0   1.0
2  please buy a peach and an apple    1.0    1.0   0.0
3                    I want squash    0.0    0.0   0.0

我想到了另一个完全不同的单行:

df[items] = df['col1'].str.findall('|'.join(items)).str.join('|').str.get_dummies('|')

输出:

>>> df
                              col1  apple  pear  peach
0                  i want an apple      1     0      0
1                     i hate pears      0     0      1
2  please buy a peach and an apple      1     1      0
3                    I want squash      0     0      0