从云函数内部构建容器镜像
Build a container image from inside a cloud function
上下文:我在 Google Vertex AI 中为每个 bigquery 数据集训练一个非常相似的模型,但我想为每个现有数据集(在 Google BigQuery 中)都有一个自定义训练图像。从这个意义上讲,我需要按需在容器注册表中以编程方式构建自定义 Docker 图像。我的想法是让 Google Cloud Function 执行此操作,由 PubSub 主题触发,其中包含有关我要为其构建训练容器的数据集的信息。因此,该函数自然会将 Docker 文件和相关脚本写入 Cloud Functions 中的 /tmp 文件夹(据我所知,这是唯一可写的地方)。但是,当我尝试在此脚本中实际构建容器时,显然它找不到 /tmp 文件夹或其内容,即使它们在那里(通过日志记录操作检查)。
到目前为止麻烦的代码:
def build_container(dataset=str):
with open('container_template/Dockerfile','r') as f:
dockerfile = f.read()
dockerfile = dockerfile.replace('@dataset',dataset)
f.close()
os.makedirs(os.path.dirname('/tmp/script-location'), exist_ok=True)
with open('/tmp/Dockerfile','w') as docker_config:
docker_config.write(dockerfile)
docker_config.close()
shutil.copy('container_template/script-location/script.py','/tmp/script-location/script.py')
build_client = cloudbuild_v1.CloudBuildClient()
build = cloudbuild_v1.Build()
build.steps = [{'name':'gcr.io/cloud-builders/docker',
'args':['build', '-t', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest','/tmp']},
{'name':'gcr.io/cloud-builders/docker',
'args':['push', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest']}]
build_operation = build_client.create_build(project_id=myprojectid,build=build)
build_result = build_operation.result()
logger.info('Build Result: {}'.format(build_result.status))
当我检查云构建日志时,我得到:
步骤#0:无法准备上下文:无法评估 Docker 文件路径中的符号链接:lstat /tmp/Dockerfile:没有这样的文件或目录
我已经在本地测试了使用 Cloud Build Client Python library 构建容器映像。事实证明即使 Dockerfile
文件存在于当前目录中也会出现相同的错误:
错误:
Step #0: unable to prepare context: unable to evaluate symlinks in Dockerfile path: lstat /workspace/Dockerfile: no such file or directory
构建步骤:
build_client = cloudbuild_v1.CloudBuildClient()
build = cloudbuild_v1.Build()
build.steps = [{'name':'gcr.io/cloud-builders/docker',
'args':['build', '-t', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest','.']},
{'name':'gcr.io/cloud-builders/docker',
'args':['push', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest']}]
build_operation = build_client.create_build(project_id=myprojectid,build=build)
build_result = build_operation.result()
因为它使用了 API 方法,所以我遵循了这个 documentation. You will see the source
is present in API method. It is the missing key to move forward the problem. In StorageSource
,你必须指定 bucket
和 object_
。您需要压缩源代码并将其上传到 Cloud Storage 存储桶中。例如:
- 运行以下命令压缩你的源代码:
tar -cvzf sourcecode.tar.gz .
- 上传到 Cloud Storage 存储桶(您可以使用 Cloud Build 存储桶):
gsutil cp sourcecode.tar.gz gs://myproject_cloudbuild
- build.source:
build_client = cloudbuild_v1.CloudBuildClient()
build = cloudbuild_v1.Build()
build.source = {"storage_source":{"bucket":"myproject_cloudbuild", "object_":"gs://myproject_cloudbuild/sourcecode.tar.gz"}}
build.steps = [{'name':'gcr.io/cloud-builders/docker',
'args':['build', '-t', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest','.']},
{'name':'gcr.io/cloud-builders/docker',
'args':['push', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest']}]
build_operation = build_client.create_build(project_id=myprojectid,build=build)
build_result = build_operation.result()
因此它解决了使用客户端库构建图像的问题。我建议在您的 Cloud Function 中执行所有这些操作。
上下文:我在 Google Vertex AI 中为每个 bigquery 数据集训练一个非常相似的模型,但我想为每个现有数据集(在 Google BigQuery 中)都有一个自定义训练图像。从这个意义上讲,我需要按需在容器注册表中以编程方式构建自定义 Docker 图像。我的想法是让 Google Cloud Function 执行此操作,由 PubSub 主题触发,其中包含有关我要为其构建训练容器的数据集的信息。因此,该函数自然会将 Docker 文件和相关脚本写入 Cloud Functions 中的 /tmp 文件夹(据我所知,这是唯一可写的地方)。但是,当我尝试在此脚本中实际构建容器时,显然它找不到 /tmp 文件夹或其内容,即使它们在那里(通过日志记录操作检查)。
到目前为止麻烦的代码:
def build_container(dataset=str):
with open('container_template/Dockerfile','r') as f:
dockerfile = f.read()
dockerfile = dockerfile.replace('@dataset',dataset)
f.close()
os.makedirs(os.path.dirname('/tmp/script-location'), exist_ok=True)
with open('/tmp/Dockerfile','w') as docker_config:
docker_config.write(dockerfile)
docker_config.close()
shutil.copy('container_template/script-location/script.py','/tmp/script-location/script.py')
build_client = cloudbuild_v1.CloudBuildClient()
build = cloudbuild_v1.Build()
build.steps = [{'name':'gcr.io/cloud-builders/docker',
'args':['build', '-t', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest','/tmp']},
{'name':'gcr.io/cloud-builders/docker',
'args':['push', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest']}]
build_operation = build_client.create_build(project_id=myprojectid,build=build)
build_result = build_operation.result()
logger.info('Build Result: {}'.format(build_result.status))
当我检查云构建日志时,我得到: 步骤#0:无法准备上下文:无法评估 Docker 文件路径中的符号链接:lstat /tmp/Dockerfile:没有这样的文件或目录
我已经在本地测试了使用 Cloud Build Client Python library 构建容器映像。事实证明即使 Dockerfile
文件存在于当前目录中也会出现相同的错误:
错误:
Step #0: unable to prepare context: unable to evaluate symlinks in Dockerfile path: lstat /workspace/Dockerfile: no such file or directory
构建步骤:
build_client = cloudbuild_v1.CloudBuildClient()
build = cloudbuild_v1.Build()
build.steps = [{'name':'gcr.io/cloud-builders/docker',
'args':['build', '-t', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest','.']},
{'name':'gcr.io/cloud-builders/docker',
'args':['push', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest']}]
build_operation = build_client.create_build(project_id=myprojectid,build=build)
build_result = build_operation.result()
因为它使用了 API 方法,所以我遵循了这个 documentation. You will see the source
is present in API method. It is the missing key to move forward the problem. In StorageSource
,你必须指定 bucket
和 object_
。您需要压缩源代码并将其上传到 Cloud Storage 存储桶中。例如:
- 运行以下命令压缩你的源代码:
tar -cvzf sourcecode.tar.gz .
- 上传到 Cloud Storage 存储桶(您可以使用 Cloud Build 存储桶):
gsutil cp sourcecode.tar.gz gs://myproject_cloudbuild
- build.source:
build_client = cloudbuild_v1.CloudBuildClient()
build = cloudbuild_v1.Build()
build.source = {"storage_source":{"bucket":"myproject_cloudbuild", "object_":"gs://myproject_cloudbuild/sourcecode.tar.gz"}}
build.steps = [{'name':'gcr.io/cloud-builders/docker',
'args':['build', '-t', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest','.']},
{'name':'gcr.io/cloud-builders/docker',
'args':['push', 'us-central1-docker.pkg.dev/myproject/myrepo/imagename:latest']}]
build_operation = build_client.create_build(project_id=myprojectid,build=build)
build_result = build_operation.result()
因此它解决了使用客户端库构建图像的问题。我建议在您的 Cloud Function 中执行所有这些操作。