Apache Spark:如何从 DataFrame 创建矩阵?
Apache Spark: How to create a matrix from a DataFrame?
我在 Apache Spark 中有一个带有整数数组的 DataFrame,源是一组图像。我最终想对其进行 PCA,但我无法从我的数组创建矩阵。如何从 RDD 创建矩阵?
> imagerdd = traindf.map(lambda row: map(float, row.image))
> mat = DenseMatrix(numRows=206456, numCols=10, values=imagerdd)
Traceback (most recent call last):
File "<ipython-input-21-6fdaa8cde069>", line 2, in <module>
mat = DenseMatrix(numRows=206456, numCols=10, values=imagerdd)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 815, in __init__
values = self._convert_to_array(values, np.float64)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 806, in _convert_to_array
return np.asarray(array_like, dtype=dtype)
File "/usr/local/python/conda/lib/python2.7/site- packages/numpy/core/numeric.py", line 462, in asarray
return array(a, dtype, copy=False, order=order)
TypeError: float() argument must be a string or a number
我从我能想到的每一种可能的安排中得到了同样的错误:
imagerdd = traindf.map(lambda row: Vectors.dense(row.image))
imagerdd = traindf.map(lambda row: row.image)
imagerdd = traindf.map(lambda row: np.array(row.image))
如果我尝试
> imagedf = traindf.select("image")
> mat = DenseMatrix(numRows=206456, numCols=10, values=imagedf)
回溯(最近调用最后):
File "<ipython-input-26-a8cbdad10291>", line 2, in <module>
mat = DenseMatrix(numRows=206456, numCols=10, values=imagedf)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 815, in __init__
values = self._convert_to_array(values, np.float64)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 806, in _convert_to_array
return np.asarray(array_like, dtype=dtype)
File "/usr/local/python/conda/lib/python2.7/site-packages/numpy/core/numeric.py", line 462, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
由于您没有提供示例输入,我假设它看起来或多或少像这样,其中 id
是行号,image
包含值。
traindf = sqlContext.createDataFrame([
(1, [1, 2, 3]),
(2, [4, 5, 6]),
(3, (7, 8, 9))
], ("id", "image"))
首先你要明白的是 DenseMatrix
是一个 local 数据结构。准确地说,它是 numpy.ndarray
的包装器。至于现在(Spark 1.4.1),PySpark MLlib 中没有分布式等效项。
密集矩阵采用三个强制参数 numRows
、numCols
、values
,其中 values
是局部数据结构。在你的情况下,你必须先收集:
values = (traindf.
rdd.
map(lambda r: (r.id, r.image)). # Extract row id and data
sortByKey(). # Sort by row id
flatMap(lambda (id, image): image).
collect())
ncol = len(traindf.rdd.map(lambda r: r.image).first())
nrow = traindf.count()
dm = DenseMatrix(nrow, ncol, values)
最后:
> print dm.toArray()
[[ 1. 4. 7.]
[ 2. 5. 8.]
[ 3. 6. 9.]]
编辑:
在 Spark 1.5+ 中,您可以按如下方式使用 mllib.linalg.distributed
:
from pyspark.mllib.linalg.distributed import IndexedRow, IndexedRowMatrix
mat = IndexedRowMatrix(traindf.map(lambda row: IndexedRow(*row)))
mat.numRows()
## 4
mat.numCols()
## 3
尽管就目前而言 API 在实践中仍然受到限制。
我在 Apache Spark 中有一个带有整数数组的 DataFrame,源是一组图像。我最终想对其进行 PCA,但我无法从我的数组创建矩阵。如何从 RDD 创建矩阵?
> imagerdd = traindf.map(lambda row: map(float, row.image))
> mat = DenseMatrix(numRows=206456, numCols=10, values=imagerdd)
Traceback (most recent call last):
File "<ipython-input-21-6fdaa8cde069>", line 2, in <module>
mat = DenseMatrix(numRows=206456, numCols=10, values=imagerdd)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 815, in __init__
values = self._convert_to_array(values, np.float64)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 806, in _convert_to_array
return np.asarray(array_like, dtype=dtype)
File "/usr/local/python/conda/lib/python2.7/site- packages/numpy/core/numeric.py", line 462, in asarray
return array(a, dtype, copy=False, order=order)
TypeError: float() argument must be a string or a number
我从我能想到的每一种可能的安排中得到了同样的错误:
imagerdd = traindf.map(lambda row: Vectors.dense(row.image))
imagerdd = traindf.map(lambda row: row.image)
imagerdd = traindf.map(lambda row: np.array(row.image))
如果我尝试
> imagedf = traindf.select("image")
> mat = DenseMatrix(numRows=206456, numCols=10, values=imagedf)
回溯(最近调用最后):
File "<ipython-input-26-a8cbdad10291>", line 2, in <module>
mat = DenseMatrix(numRows=206456, numCols=10, values=imagedf)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 815, in __init__
values = self._convert_to_array(values, np.float64)
File "/usr/local/spark/current/python/lib/pyspark.zip/pyspark/mllib/linalg.py", line 806, in _convert_to_array
return np.asarray(array_like, dtype=dtype)
File "/usr/local/python/conda/lib/python2.7/site-packages/numpy/core/numeric.py", line 462, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
由于您没有提供示例输入,我假设它看起来或多或少像这样,其中 id
是行号,image
包含值。
traindf = sqlContext.createDataFrame([
(1, [1, 2, 3]),
(2, [4, 5, 6]),
(3, (7, 8, 9))
], ("id", "image"))
首先你要明白的是 DenseMatrix
是一个 local 数据结构。准确地说,它是 numpy.ndarray
的包装器。至于现在(Spark 1.4.1),PySpark MLlib 中没有分布式等效项。
密集矩阵采用三个强制参数 numRows
、numCols
、values
,其中 values
是局部数据结构。在你的情况下,你必须先收集:
values = (traindf.
rdd.
map(lambda r: (r.id, r.image)). # Extract row id and data
sortByKey(). # Sort by row id
flatMap(lambda (id, image): image).
collect())
ncol = len(traindf.rdd.map(lambda r: r.image).first())
nrow = traindf.count()
dm = DenseMatrix(nrow, ncol, values)
最后:
> print dm.toArray()
[[ 1. 4. 7.]
[ 2. 5. 8.]
[ 3. 6. 9.]]
编辑:
在 Spark 1.5+ 中,您可以按如下方式使用 mllib.linalg.distributed
:
from pyspark.mllib.linalg.distributed import IndexedRow, IndexedRowMatrix
mat = IndexedRowMatrix(traindf.map(lambda row: IndexedRow(*row)))
mat.numRows()
## 4
mat.numCols()
## 3
尽管就目前而言 API 在实践中仍然受到限制。