用 Folium 和 Geopandas 绘制多边形不起作用
Plotting polygons with Folium and Geopandas don't work
我尝试使用 Geopandas official tutorial and this 数据集绘制多边形以使用 Geopandas 和 Folium 进行映射。我尽量按照字面意思按照教程进行操作,但 Folium 仍然不绘制多边形。 Matplotlib 地图有效,我也可以创建 Folium 地图。代码:
import pandas as pd
import geopandas as gdp
import folium
import matplotlib.pyplot as plt
df = pd.read_csv('https://geo.stat.fi/geoserver/wfs?service=WFS&version=2.0.0&request=GetFeature&typeName=postialue:pno_tilasto&outputFormat=csv')
df.to_csv('coordinates.csv')
#limit to Helsinki and drop unnecessary columns
df['population_2019'] = df['he_vakiy']
df['zipcode'] = df['postinumeroalue'].astype(int)
df['population_2019'] = df['population_2019'].astype(int)
df = df[df['zipcode'] < 1000]
df = df[['zipcode', 'nimi', 'geom', 'population_2019']]
df.to_csv('coordinates_hki.csv')
df.head()
#this is from there: https://gis.stackexchange.com/questions/387225/set-geometry-in-#geodataframe-to-another-column-fails-typeerror-input-must-be
from shapely.wkt import loads
df = gdp.read_file('coordinates_hki.csv')
df.geometry = df['geom'].apply(loads)
df.plot(figsize=(6, 6))
plt.show()
df = df.set_crs(epsg=4326)
print(df.crs)
df.plot(figsize=(6, 6))
plt.show()
m = folium.Map(location=[60.1674881,24.9427473], zoom_start=10, tiles='CartoDB positron')
m
for _, r in df.iterrows():
# Without simplifying the representation of each borough,
# the map might not be displayed
sim_geo = gdp.GeoSeries(r['geometry']).simplify(tolerance=0.00001)
geo_j = sim_geo.to_json()
geo_j = folium.GeoJson(data=geo_j,
style_function=lambda x: {'fillColor': 'orange'})
folium.Popup(r['nimi']).add_to(geo_j)
geo_j.add_to(folium.Popup(r['nimi']))
m
这里的诀窍是要意识到您的数据不是以度为单位的。您可以通过查看多边形的质心来确定这一点:
>>> print(df.geometry.centroid)
0 POINT (381147.564 6673464.230)
1 POINT (381878.124 6676471.194)
2 POINT (381245.290 6677483.758)
3 POINT (381050.952 6678206.603)
4 POINT (382129.741 6677505.464)
...
79 POINT (397465.125 6676003.926)
80 POINT (393716.203 6675794.166)
81 POINT (393436.954 6679515.888)
82 POINT (395196.736 6677776.331)
83 POINT (398338.591 6675428.040)
Length: 84, dtype: geometry
这些值远远大于地理空间数据的正常范围,经度为 -180 到 180,纬度为 -90 到 90。下一步是弄清楚它实际上在什么 CRS 中。如果你拿你的数据集 URL,并去掉 &outputFormat=csv
部分,你会得到这个 URL:
https://geo.stat.fi/geoserver/wfs?service=WFS&version=2.0.0&request=GetFeature&typeName=postialue:pno_tilasto
在该文档中搜索 CRS,您会发现:
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::3067" srsDimension="2">
原来你的数据在 EPSG:3067 中,这是代表芬兰坐标的标准。
您需要将此告知 geopandas,并转换为 WGS84(最常见的坐标系)以使其与 folium 兼容。
df.geometry = df['geom'].apply(loads)
df = df.set_crs('EPSG:3067')
df = df.to_crs('WGS84')
函数set_crs(), changes the coordinate system that GeoPandas expects the data to be in, but does not change any of the coordinates. The function to_crs()获取数据集中的点并将它们重新投影到新的坐标系中。这两个调用的效果是从EPSG:3067转换为WGS84.
通过添加这两行,我得到以下结果:
我尝试使用 Geopandas official tutorial and this 数据集绘制多边形以使用 Geopandas 和 Folium 进行映射。我尽量按照字面意思按照教程进行操作,但 Folium 仍然不绘制多边形。 Matplotlib 地图有效,我也可以创建 Folium 地图。代码:
import pandas as pd
import geopandas as gdp
import folium
import matplotlib.pyplot as plt
df = pd.read_csv('https://geo.stat.fi/geoserver/wfs?service=WFS&version=2.0.0&request=GetFeature&typeName=postialue:pno_tilasto&outputFormat=csv')
df.to_csv('coordinates.csv')
#limit to Helsinki and drop unnecessary columns
df['population_2019'] = df['he_vakiy']
df['zipcode'] = df['postinumeroalue'].astype(int)
df['population_2019'] = df['population_2019'].astype(int)
df = df[df['zipcode'] < 1000]
df = df[['zipcode', 'nimi', 'geom', 'population_2019']]
df.to_csv('coordinates_hki.csv')
df.head()
#this is from there: https://gis.stackexchange.com/questions/387225/set-geometry-in-#geodataframe-to-another-column-fails-typeerror-input-must-be
from shapely.wkt import loads
df = gdp.read_file('coordinates_hki.csv')
df.geometry = df['geom'].apply(loads)
df.plot(figsize=(6, 6))
plt.show()
df = df.set_crs(epsg=4326)
print(df.crs)
df.plot(figsize=(6, 6))
plt.show()
m = folium.Map(location=[60.1674881,24.9427473], zoom_start=10, tiles='CartoDB positron')
m
for _, r in df.iterrows():
# Without simplifying the representation of each borough,
# the map might not be displayed
sim_geo = gdp.GeoSeries(r['geometry']).simplify(tolerance=0.00001)
geo_j = sim_geo.to_json()
geo_j = folium.GeoJson(data=geo_j,
style_function=lambda x: {'fillColor': 'orange'})
folium.Popup(r['nimi']).add_to(geo_j)
geo_j.add_to(folium.Popup(r['nimi']))
m
这里的诀窍是要意识到您的数据不是以度为单位的。您可以通过查看多边形的质心来确定这一点:
>>> print(df.geometry.centroid)
0 POINT (381147.564 6673464.230)
1 POINT (381878.124 6676471.194)
2 POINT (381245.290 6677483.758)
3 POINT (381050.952 6678206.603)
4 POINT (382129.741 6677505.464)
...
79 POINT (397465.125 6676003.926)
80 POINT (393716.203 6675794.166)
81 POINT (393436.954 6679515.888)
82 POINT (395196.736 6677776.331)
83 POINT (398338.591 6675428.040)
Length: 84, dtype: geometry
这些值远远大于地理空间数据的正常范围,经度为 -180 到 180,纬度为 -90 到 90。下一步是弄清楚它实际上在什么 CRS 中。如果你拿你的数据集 URL,并去掉 &outputFormat=csv
部分,你会得到这个 URL:
https://geo.stat.fi/geoserver/wfs?service=WFS&version=2.0.0&request=GetFeature&typeName=postialue:pno_tilasto
在该文档中搜索 CRS,您会发现:
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::3067" srsDimension="2">
原来你的数据在 EPSG:3067 中,这是代表芬兰坐标的标准。
您需要将此告知 geopandas,并转换为 WGS84(最常见的坐标系)以使其与 folium 兼容。
df.geometry = df['geom'].apply(loads)
df = df.set_crs('EPSG:3067')
df = df.to_crs('WGS84')
函数set_crs(), changes the coordinate system that GeoPandas expects the data to be in, but does not change any of the coordinates. The function to_crs()获取数据集中的点并将它们重新投影到新的坐标系中。这两个调用的效果是从EPSG:3067转换为WGS84.
通过添加这两行,我得到以下结果: