从 "Hat" 模拟随机抽奖
Simulating Random Draws From a "Hat"
假设我有以下 10 个变量(num_var_1、num_var_2、num_var_3、num_var_4、num_var_5、factor_var_1、factor_var_2, factor_var_3, factor_var_4, factor_var_5):
set.seed(123)
num_var_1 <- rnorm(1000, 10, 1)
num_var_2 <- rnorm(1000, 10, 5)
num_var_3 <- rnorm(1000, 10, 10)
num_var_4 <- rnorm(1000, 10, 10)
num_var_5 <- rnorm(1000, 10, 10)
factor_1 <- c("A","B", "C")
factor_2 <- c("AA","BB", "CC")
factor_3 <- c("AAA","BBB", "CCC", "DDD")
factor_4 <- c("AAAA","BBBB", "CCCC", "DDDD", "EEEE")
factor_5 <- c("AAAAA","BBBBB", "CCCCC", "DDDDD", "EEEEE", "FFFFFF")
factor_var_1 <- as.factor(sample(factor_1, 1000, replace=TRUE, prob=c(0.3, 0.5, 0.2)))
factor_var_2 <- as.factor(sample(factor_2, 1000, replace=TRUE, prob=c(0.5, 0.3, 0.2)))
factor_var_3 <- as.factor(sample(factor_3, 1000, replace=TRUE, prob=c(0.5, 0.2, 0.2, 0.1)))
factor_var_4 <- as.factor(sample(factor_4, 1000, replace=TRUE, prob=c(0.5, 0.2, 0.1, 0.1, 0.1)))
factor_var_5 <- as.factor(sample(factor_4, 1000, replace=TRUE, prob=c(0.3, 0.2, 0.1, 0.1, 0.1)))
id = 1:1000
my_data = data.frame(id,num_var_1, num_var_2, num_var_3, num_var_4, num_var_5, factor_var_1, factor_var_2, factor_var_3, factor_var_4, factor_var_5)
> head(my_data)
id num_var_1 num_var_2 num_var_3 num_var_4 num_var_5 factor_var_1 factor_var_2 factor_var_3 factor_var_4 factor_var_5
1 1 9.439524 5.021006 4.883963 8.496925 11.965498 B AA AAA CCCC AAAA
2 2 9.769823 4.800225 12.369379 6.722429 16.501132 B AA AAA AAAA AAAA
3 3 11.558708 9.910099 4.584108 -4.481653 16.710042 C AA BBB AAAA CCCC
4 4 10.070508 9.339124 22.192276 3.027154 -2.841578 B CC DDD BBBB AAAA
5 5 10.129288 -2.746714 11.741359 35.984902 -10.261096 B AA AAA DDDD DDDD
6 6 11.715065 15.202867 3.847317 9.625850 32.053261 B AA CCC BBBB EEEE
我的问题: 我有兴趣从该数据中选择随机数量的变量 - 并从这些变量中提取随机子集。 (然后多次重复这个过程)。例如-我想记录这样一个随机生成的列表:
迭代 1:num_var_2 > 12,factor_var_1 =“A,C”,factor_var_4 =“BBBB,DDDD,EEEE”
迭代 2: num_var_1 >0, num_var_3 <10, factor_var_2 = "AA, BB, CC", factor_var_3 = " AAA", factor_var_5 = "CCCCC, DDDDD"
迭代 3:num_var_2 <5,num_var_5 <10,factor_var_1 =“B”,factor_var_3 =“AAA”
迭代 4:factor_var_4 = "BBBB"
等等
我可以手动执行上述操作,但这需要很长时间(例如 10 次迭代)。有没有办法自动化这个过程,最后只输出这种列表(10行×2列):
Iteration Condition
1 num_var_2 > 12, factor_var_1 = A, C, factor_var_4 = BBBB, DDDD, EEEE
2 num_var_1 >0, num_var_3 <10, factor_var_2 = AA, BB, CC, factor_var_3 = AAA, factor_var_5 = CCCCC, DDDDD
3 num_var_2 <5, num_var_5 <10, factor_var_1 = B, factor_var_3 = AAA
4 factor_var_4 = BBBB
有人可以告诉我怎么做吗?
您可以定义一个函数 FUN(n)
来创建如 OP 中所示的数据集。
FUN <- function(n=1e3) {
num_var_1 <- rnorm(n, 10, 1)
num_var_2 <- rnorm(n, 10, 5)
num_var_3 <- rnorm(n, 10, 10)
num_var_4 <- rnorm(n, 10, 10)
num_var_5 <- rnorm(n, 10, 10)
factor_1 <- c("A", "B", "C")
factor_2 <- c("AA", "BB", "CC")
factor_3 <- c("AAA", "BBB", "CCC", "DDD")
factor_4 <- c("AAAA", "BBBB", "CCCC", "DDDD", "EEEE")
factor_5 <- c("AAAAA", "BBBBB", "CCCCC", "DDDDD", "EEEEE", "FFFFFF")
factor_var_1 <- as.factor(sample(factor_1, n, replace=TRUE,
prob=c(0.3, 0.5, 0.2)))
factor_var_2 <- as.factor(sample(factor_2, n, replace=TRUE,
prob=c(0.5, 0.3, 0.2)))
factor_var_3 <- as.factor(sample(factor_3, n, replace=TRUE,
prob=c(0.5, 0.2, 0.2, 0.1)))
factor_var_4 <- as.factor(sample(factor_4, n, replace=TRUE,
prob=c(0.5, 0.2, 0.1, 0.1, 0.1)))
factor_var_5 <- as.factor(sample(factor_5, n, replace=TRUE,
prob=c(0.3, 0.2, 0.1, 0.1, 0.1, .2)))
id <- 1:n
return(data.frame(id, num_var_1, num_var_2, num_var_3, num_var_4,
num_var_5, factor_var_1, factor_var_2, factor_var_3,
factor_var_4, factor_var_5))
}
接下来,将(适当的)表达式定义为列表中的字符串 evl
。
evl <- list(
c('num_var_2 > 12', 'factor_var_1 %in% c("A", "C")',
'factor_var_4 %in% c("BBBB", "DDDD", "EEEE")'),
c('num_var_1 > 0', 'num_var_3 < 10', 'factor_var_2 %in% c("AA", "BB", "CC")',
'factor_var_3 %in% "AAA"', 'factor_var_5 %in% c("CCCCC", "DDDDD")'),
c('num_var_2 < 5', 'num_var_5 < 10', 'factor_var_1 %in% "B"',
'factor_var_3 %in% "AAA"'),
c('factor_var_4 %in% "BBBB"')
)
最后,在Map
中定义一个函数,使用eval(parse(text=))
根据各自的表达式对一个replicate
ion的数据进行子集化。在函数外使用 set.seed()
以防止每次迭代都生成相同的数据。
set.seed(42)
result <- Map(\(x, y) x[with(x, eval(parse(text=paste(y, collapse=' & ')))), ],
replicate(length(evl), FUN(), simplify=FALSE),
evl)
注: R version 4.1.2 (2021-11-01)
给予
str(result)
# List of 4
# $ :'data.frame': 59 obs. of 11 variables:
# ..$ id : int [1:59] 3 6 25 29 32 34 52 54 58 93 ...
# ..$ num_var_1 : num [1:59] 9.99 10.95 9.38 8.53 9.65 ...
# ..$ num_var_2 : num [1:59] 13.6 17.4 20.3 19.3 16.1 ...
# ..$ num_var_3 : num [1:59] 9.42 18.67 6.1 25.71 -2.73 ...
# ..$ num_var_4 : num [1:59] 6.29 9.22 3.68 16.27 15.77 ...
# ..$ num_var_5 : num [1:59] 13.37 18.86 4.89 24.18 26.11 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 3 1 3 1 3 3 1 3 1 1 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 3 3 1 1 1 2 3 3 1 3 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 1 2 1 1 4 2 1 3 2 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 5 2 2 2 2 2 5 2 4 4 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 5 2 3 5 4 4 6 1 6 ...
# $ :'data.frame': 53 obs. of 11 variables:
# ..$ id : int [1:53] 2 14 28 36 49 59 75 103 134 137 ...
# ..$ num_var_1 : num [1:53] 9.67 11.61 11.22 10.14 10.5 ...
# ..$ num_var_2 : num [1:53] 10.89 7.12 2.38 13.28 10.88 ...
# ..$ num_var_3 : num [1:53] 5.87 7.33 2.88 -10.78 4.09 ...
# ..$ num_var_4 : num [1:53] 19.239 6.261 -0.158 14.586 -0.544 ...
# ..$ num_var_5 : num [1:53] -5.1 21.04 2.81 1.76 27.19 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 1 1 1 2 3 2 3 3 2 3 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 2 2 2 3 3 3 3 2 1 1 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 1 1 1 1 1 1 1 1 1 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 1 5 5 1 4 4 4 4 1 4 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 4 4 3 3 4 4 4 4 3 ...
# $ :'data.frame': 20 obs. of 11 variables:
# ..$ id : int [1:20] 3 44 91 181 222 233 241 287 293 302 ...
# ..$ num_var_1 : num [1:20] 12 10.26 9.65 8.48 12.1 ...
# ..$ num_var_2 : num [1:20] 3.68 3.61 3.28 4.01 1.78 ...
# ..$ num_var_3 : num [1:20] 4.113 -3.481 17.654 0.496 5.457 ...
# ..$ num_var_4 : num [1:20] 9.25 19.79 17.15 -4.72 22.16 ...
# ..$ num_var_5 : num [1:20] 6 8.49 4.31 4.67 1.96 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 2 2 2 2 2 2 2 2 2 2 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 2 1 3 1 1 1 1 3 2 1 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 1 1 1 1 1 1 1 1 1 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 3 1 1 1 1 1 1 1 1 1 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 5 5 1 1 1 2 6 1 2 ...
# $ :'data.frame': 205 obs. of 11 variables:
# ..$ id : int [1:205] 7 10 23 24 27 29 31 33 38 40 ...
# ..$ num_var_1 : num [1:205] 10.23 9.78 8.92 10.16 9.93 ...
# ..$ num_var_2 : num [1:205] 23.49 13.06 12.17 16.88 7.93 ...
# ..$ num_var_3 : num [1:205] 6.33 9.33 14.04 21.66 28.56 ...
# ..$ num_var_4 : num [1:205] 16.33 -1.805 0.509 21.2 15.158 ...
# ..$ num_var_5 : num [1:205] 8.48 -1.31 5.03 15.07 19.48 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 1 1 2 1 2 1 2 2 3 2 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 3 1 1 2 1 1 1 2 1 3 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 2 3 1 3 4 3 1 3 2 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 2 2 2 2 2 2 2 2 2 2 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 5 2 6 6 2 6 1 2 2 ...
据我了解,对于factor
或character
向量,我们需要一个函数来随机决定样本大小,然后从一些数据点中随机抽样。对于 numeric
向量,我们需要一个函数来随机决定最小值和最大值之间的截止点,以及是否选择大于或小于该截止点的数字。最后,我们需要根据本post.
中提供的格式来总结规则
考虑以下用于 factor
和 character
的函数。它首先根据 x
中的项目数决定一个随机样本大小,然后从 x
.
中随机抽取项目。
random_pick <- function(x) {
sample_size <- sample.int(length(x), 1L)
out <- x[sort(sample.int(length(x), sample_size))]
list("=", out)
}
另外,考虑 numeric
s 这样的函数。它找到 min/max,确定截断点和比较符号。
random_trunc <- function(x) {
rng <- range(x)
cutoff <- runif(1L, rng[[1L]], rng[[2L]])
sgn <- c("<", ">")[[sample.int(2L, 1L)]]
list(sgn, cutoff)
}
然后,我们assemble将这两个功能结合起来针对您的具体情况。请注意,对于 character
s,我们只需要选择唯一的。
random_select <- function(x) {
if (is.numeric(x))
return(random_trunc(x))
if (is.factor(x))
return(random_pick(levels(x)))
random_pick(unique(x))
}
report
根据提供的格式生成我们想要的规则
report <- function(f) function(...) {
x <- f(...)
if (x[[1L]] != "=")
return(sprintf("%s %.2f", x[[1L]], x[[2L]]))
sprintf("%s \"%s\"", x[[1L]], paste0(x[[2L]], collapse = ", "))
}
现在我们已经准备好编写我们的函数,用于从数据集中随机生成规则。思路是首先从所有变量中随机select(第一个id
除外),然后对每个select应用random_rule
,最后总结结果。
random_rule <- function(dt) {
out <- vapply(
dt[random_pick(names(dt)[-1L])[[2L]]],
report(random_select), character(1L)
)
paste(names(out), out, collapse = ", ")
}
因此,我们可以根据需要简单地进行多次迭代
set.seed(123)
data.frame(iteration = 1:10, results = replicate(10L, random_rule(my_data)))
结果
> set.seed(123)
> data.frame(iteration = 1:10, records = replicate(10L, random_rule(my_data)))
iteration
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
records
1 num_var_2 < 12.51, num_var_3 > 41.50, factor_var_1 = "A, B"
2 num_var_1 < 11.16, num_var_3 > 15.63, num_var_4 > -3.87, factor_var_2 = "BB", factor_var_4 = "AAAA, BBBB, DDDD"
3 num_var_1 < 9.87, num_var_2 < -1.32, num_var_3 > -5.54, num_var_4 > 24.09, num_var_5 < 3.28, factor_var_2 = "AA, BB, CC", factor_var_3 = "CCC"
4 num_var_1 > 9.72, num_var_2 > -1.93, num_var_3 < 43.27, num_var_4 < 32.11, num_var_5 > -12.77, factor_var_1 = "B", factor_var_2 = "AA", factor_var_4 = "AAAA, BBBB, DDDD", factor_var_5 = "AAAA"
5 num_var_1 > 10.51, num_var_2 > 13.61, num_var_3 > 22.14, num_var_4 < -2.75, factor_var_1 = "A, B, C", factor_var_3 = "AAA", factor_var_4 = "BBBB, DDDD, EEEE"
6 factor_var_1 = "A, B, C", factor_var_5 = "BBBB, CCCC, EEEE"
7 num_var_1 > 9.34, num_var_2 < 18.59, num_var_3 < 7.39, num_var_4 > 16.66, num_var_5 > 35.48, factor_var_1 = "C", factor_var_2 = "AA, BB, CC", factor_var_4 = "AAAA, BBBB, CCCC"
8 num_var_1 > 10.66, num_var_2 > 25.74, num_var_3 > 13.81, num_var_4 > 31.73, num_var_5 > -2.40, factor_var_1 = "A, B, C", factor_var_2 = "AA, BB", factor_var_3 = "AAA, CCC, DDD", factor_var_4 = "AAAA, BBBB, CCCC, DDDD, EEEE", factor_var_5 = "DDDD"
9 num_var_1 < 10.78, num_var_2 < 11.86, num_var_3 < -7.95, num_var_4 < 7.12, num_var_5 > 39.57, factor_var_1 = "A, B, C", factor_var_2 = "AA, BB, CC", factor_var_3 = "CCC", factor_var_4 = "BBBB, EEEE", factor_var_5 = "AAAA, BBBB, CCCC, DDDD, EEEE"
10 num_var_1 < 7.63, num_var_2 > 19.04, num_var_4 > 37.87, num_var_5 < -14.85, factor_var_1 = "A, B", factor_var_2 = "AA, CC", factor_var_4 = "AAAA, CCCC"
把所有东西放在一起
random_pick <- function(x) {
sample_size <- sample.int(length(x), 1L)
out <- x[sort(sample.int(length(x), sample_size))]
list("=", out)
}
random_trunc <- function(x) {
rng <- range(x)
cutoff <- runif(1L, rng[[1L]], rng[[2L]])
sgn <- c("<", ">")[[sample.int(2L, 1L)]]
list(sgn, cutoff)
}
random_select <- function(x) {
if (is.numeric(x))
return(random_trunc(x))
if (is.factor(x))
return(random_pick(levels(x)))
random_pick(unique(x))
}
report <- function(f) function(...) {
x <- f(...)
if (x[[1L]] != "=")
return(sprintf("%s %.2f", x[[1L]], x[[2L]]))
sprintf("%s \"%s\"", x[[1L]], paste0(x[[2L]], collapse = ", "))
}
random_rule <- function(dt) {
out <- vapply(
dt[random_pick(names(dt)[-1L])[[2L]]],
report(random_select), character(1L)
)
paste(names(out), out, collapse = ", ")
}
set.seed(123)
data.frame(iteration = 1:10, records = replicate(10L, random_rule(my_data)))
假设我有以下 10 个变量(num_var_1、num_var_2、num_var_3、num_var_4、num_var_5、factor_var_1、factor_var_2, factor_var_3, factor_var_4, factor_var_5):
set.seed(123)
num_var_1 <- rnorm(1000, 10, 1)
num_var_2 <- rnorm(1000, 10, 5)
num_var_3 <- rnorm(1000, 10, 10)
num_var_4 <- rnorm(1000, 10, 10)
num_var_5 <- rnorm(1000, 10, 10)
factor_1 <- c("A","B", "C")
factor_2 <- c("AA","BB", "CC")
factor_3 <- c("AAA","BBB", "CCC", "DDD")
factor_4 <- c("AAAA","BBBB", "CCCC", "DDDD", "EEEE")
factor_5 <- c("AAAAA","BBBBB", "CCCCC", "DDDDD", "EEEEE", "FFFFFF")
factor_var_1 <- as.factor(sample(factor_1, 1000, replace=TRUE, prob=c(0.3, 0.5, 0.2)))
factor_var_2 <- as.factor(sample(factor_2, 1000, replace=TRUE, prob=c(0.5, 0.3, 0.2)))
factor_var_3 <- as.factor(sample(factor_3, 1000, replace=TRUE, prob=c(0.5, 0.2, 0.2, 0.1)))
factor_var_4 <- as.factor(sample(factor_4, 1000, replace=TRUE, prob=c(0.5, 0.2, 0.1, 0.1, 0.1)))
factor_var_5 <- as.factor(sample(factor_4, 1000, replace=TRUE, prob=c(0.3, 0.2, 0.1, 0.1, 0.1)))
id = 1:1000
my_data = data.frame(id,num_var_1, num_var_2, num_var_3, num_var_4, num_var_5, factor_var_1, factor_var_2, factor_var_3, factor_var_4, factor_var_5)
> head(my_data)
id num_var_1 num_var_2 num_var_3 num_var_4 num_var_5 factor_var_1 factor_var_2 factor_var_3 factor_var_4 factor_var_5
1 1 9.439524 5.021006 4.883963 8.496925 11.965498 B AA AAA CCCC AAAA
2 2 9.769823 4.800225 12.369379 6.722429 16.501132 B AA AAA AAAA AAAA
3 3 11.558708 9.910099 4.584108 -4.481653 16.710042 C AA BBB AAAA CCCC
4 4 10.070508 9.339124 22.192276 3.027154 -2.841578 B CC DDD BBBB AAAA
5 5 10.129288 -2.746714 11.741359 35.984902 -10.261096 B AA AAA DDDD DDDD
6 6 11.715065 15.202867 3.847317 9.625850 32.053261 B AA CCC BBBB EEEE
我的问题: 我有兴趣从该数据中选择随机数量的变量 - 并从这些变量中提取随机子集。 (然后多次重复这个过程)。例如-我想记录这样一个随机生成的列表:
迭代 1:num_var_2 > 12,factor_var_1 =“A,C”,factor_var_4 =“BBBB,DDDD,EEEE”
迭代 2: num_var_1 >0, num_var_3 <10, factor_var_2 = "AA, BB, CC", factor_var_3 = " AAA", factor_var_5 = "CCCCC, DDDDD"
迭代 3:num_var_2 <5,num_var_5 <10,factor_var_1 =“B”,factor_var_3 =“AAA”
迭代 4:factor_var_4 = "BBBB"
等等
我可以手动执行上述操作,但这需要很长时间(例如 10 次迭代)。有没有办法自动化这个过程,最后只输出这种列表(10行×2列):
Iteration Condition
1 num_var_2 > 12, factor_var_1 = A, C, factor_var_4 = BBBB, DDDD, EEEE
2 num_var_1 >0, num_var_3 <10, factor_var_2 = AA, BB, CC, factor_var_3 = AAA, factor_var_5 = CCCCC, DDDDD
3 num_var_2 <5, num_var_5 <10, factor_var_1 = B, factor_var_3 = AAA
4 factor_var_4 = BBBB
有人可以告诉我怎么做吗?
您可以定义一个函数 FUN(n)
来创建如 OP 中所示的数据集。
FUN <- function(n=1e3) {
num_var_1 <- rnorm(n, 10, 1)
num_var_2 <- rnorm(n, 10, 5)
num_var_3 <- rnorm(n, 10, 10)
num_var_4 <- rnorm(n, 10, 10)
num_var_5 <- rnorm(n, 10, 10)
factor_1 <- c("A", "B", "C")
factor_2 <- c("AA", "BB", "CC")
factor_3 <- c("AAA", "BBB", "CCC", "DDD")
factor_4 <- c("AAAA", "BBBB", "CCCC", "DDDD", "EEEE")
factor_5 <- c("AAAAA", "BBBBB", "CCCCC", "DDDDD", "EEEEE", "FFFFFF")
factor_var_1 <- as.factor(sample(factor_1, n, replace=TRUE,
prob=c(0.3, 0.5, 0.2)))
factor_var_2 <- as.factor(sample(factor_2, n, replace=TRUE,
prob=c(0.5, 0.3, 0.2)))
factor_var_3 <- as.factor(sample(factor_3, n, replace=TRUE,
prob=c(0.5, 0.2, 0.2, 0.1)))
factor_var_4 <- as.factor(sample(factor_4, n, replace=TRUE,
prob=c(0.5, 0.2, 0.1, 0.1, 0.1)))
factor_var_5 <- as.factor(sample(factor_5, n, replace=TRUE,
prob=c(0.3, 0.2, 0.1, 0.1, 0.1, .2)))
id <- 1:n
return(data.frame(id, num_var_1, num_var_2, num_var_3, num_var_4,
num_var_5, factor_var_1, factor_var_2, factor_var_3,
factor_var_4, factor_var_5))
}
接下来,将(适当的)表达式定义为列表中的字符串 evl
。
evl <- list(
c('num_var_2 > 12', 'factor_var_1 %in% c("A", "C")',
'factor_var_4 %in% c("BBBB", "DDDD", "EEEE")'),
c('num_var_1 > 0', 'num_var_3 < 10', 'factor_var_2 %in% c("AA", "BB", "CC")',
'factor_var_3 %in% "AAA"', 'factor_var_5 %in% c("CCCCC", "DDDDD")'),
c('num_var_2 < 5', 'num_var_5 < 10', 'factor_var_1 %in% "B"',
'factor_var_3 %in% "AAA"'),
c('factor_var_4 %in% "BBBB"')
)
最后,在Map
中定义一个函数,使用eval(parse(text=))
根据各自的表达式对一个replicate
ion的数据进行子集化。在函数外使用 set.seed()
以防止每次迭代都生成相同的数据。
set.seed(42)
result <- Map(\(x, y) x[with(x, eval(parse(text=paste(y, collapse=' & ')))), ],
replicate(length(evl), FUN(), simplify=FALSE),
evl)
注: R version 4.1.2 (2021-11-01)
给予
str(result)
# List of 4
# $ :'data.frame': 59 obs. of 11 variables:
# ..$ id : int [1:59] 3 6 25 29 32 34 52 54 58 93 ...
# ..$ num_var_1 : num [1:59] 9.99 10.95 9.38 8.53 9.65 ...
# ..$ num_var_2 : num [1:59] 13.6 17.4 20.3 19.3 16.1 ...
# ..$ num_var_3 : num [1:59] 9.42 18.67 6.1 25.71 -2.73 ...
# ..$ num_var_4 : num [1:59] 6.29 9.22 3.68 16.27 15.77 ...
# ..$ num_var_5 : num [1:59] 13.37 18.86 4.89 24.18 26.11 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 3 1 3 1 3 3 1 3 1 1 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 3 3 1 1 1 2 3 3 1 3 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 1 2 1 1 4 2 1 3 2 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 5 2 2 2 2 2 5 2 4 4 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 5 2 3 5 4 4 6 1 6 ...
# $ :'data.frame': 53 obs. of 11 variables:
# ..$ id : int [1:53] 2 14 28 36 49 59 75 103 134 137 ...
# ..$ num_var_1 : num [1:53] 9.67 11.61 11.22 10.14 10.5 ...
# ..$ num_var_2 : num [1:53] 10.89 7.12 2.38 13.28 10.88 ...
# ..$ num_var_3 : num [1:53] 5.87 7.33 2.88 -10.78 4.09 ...
# ..$ num_var_4 : num [1:53] 19.239 6.261 -0.158 14.586 -0.544 ...
# ..$ num_var_5 : num [1:53] -5.1 21.04 2.81 1.76 27.19 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 1 1 1 2 3 2 3 3 2 3 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 2 2 2 3 3 3 3 2 1 1 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 1 1 1 1 1 1 1 1 1 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 1 5 5 1 4 4 4 4 1 4 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 4 4 3 3 4 4 4 4 3 ...
# $ :'data.frame': 20 obs. of 11 variables:
# ..$ id : int [1:20] 3 44 91 181 222 233 241 287 293 302 ...
# ..$ num_var_1 : num [1:20] 12 10.26 9.65 8.48 12.1 ...
# ..$ num_var_2 : num [1:20] 3.68 3.61 3.28 4.01 1.78 ...
# ..$ num_var_3 : num [1:20] 4.113 -3.481 17.654 0.496 5.457 ...
# ..$ num_var_4 : num [1:20] 9.25 19.79 17.15 -4.72 22.16 ...
# ..$ num_var_5 : num [1:20] 6 8.49 4.31 4.67 1.96 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 2 2 2 2 2 2 2 2 2 2 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 2 1 3 1 1 1 1 3 2 1 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 1 1 1 1 1 1 1 1 1 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 3 1 1 1 1 1 1 1 1 1 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 5 5 1 1 1 2 6 1 2 ...
# $ :'data.frame': 205 obs. of 11 variables:
# ..$ id : int [1:205] 7 10 23 24 27 29 31 33 38 40 ...
# ..$ num_var_1 : num [1:205] 10.23 9.78 8.92 10.16 9.93 ...
# ..$ num_var_2 : num [1:205] 23.49 13.06 12.17 16.88 7.93 ...
# ..$ num_var_3 : num [1:205] 6.33 9.33 14.04 21.66 28.56 ...
# ..$ num_var_4 : num [1:205] 16.33 -1.805 0.509 21.2 15.158 ...
# ..$ num_var_5 : num [1:205] 8.48 -1.31 5.03 15.07 19.48 ...
# ..$ factor_var_1: Factor w/ 3 levels "A","B","C": 1 1 2 1 2 1 2 2 3 2 ...
# ..$ factor_var_2: Factor w/ 3 levels "AA","BB","CC": 3 1 1 2 1 1 1 2 1 3 ...
# ..$ factor_var_3: Factor w/ 4 levels "AAA","BBB","CCC",..: 1 2 3 1 3 4 3 1 3 2 ...
# ..$ factor_var_4: Factor w/ 5 levels "AAAA","BBBB",..: 2 2 2 2 2 2 2 2 2 2 ...
# ..$ factor_var_5: Factor w/ 6 levels "AAAAA","BBBBB",..: 3 5 2 6 6 2 6 1 2 2 ...
据我了解,对于factor
或character
向量,我们需要一个函数来随机决定样本大小,然后从一些数据点中随机抽样。对于 numeric
向量,我们需要一个函数来随机决定最小值和最大值之间的截止点,以及是否选择大于或小于该截止点的数字。最后,我们需要根据本post.
考虑以下用于 factor
和 character
的函数。它首先根据 x
中的项目数决定一个随机样本大小,然后从 x
.
random_pick <- function(x) {
sample_size <- sample.int(length(x), 1L)
out <- x[sort(sample.int(length(x), sample_size))]
list("=", out)
}
另外,考虑 numeric
s 这样的函数。它找到 min/max,确定截断点和比较符号。
random_trunc <- function(x) {
rng <- range(x)
cutoff <- runif(1L, rng[[1L]], rng[[2L]])
sgn <- c("<", ">")[[sample.int(2L, 1L)]]
list(sgn, cutoff)
}
然后,我们assemble将这两个功能结合起来针对您的具体情况。请注意,对于 character
s,我们只需要选择唯一的。
random_select <- function(x) {
if (is.numeric(x))
return(random_trunc(x))
if (is.factor(x))
return(random_pick(levels(x)))
random_pick(unique(x))
}
report
根据提供的格式生成我们想要的规则
report <- function(f) function(...) {
x <- f(...)
if (x[[1L]] != "=")
return(sprintf("%s %.2f", x[[1L]], x[[2L]]))
sprintf("%s \"%s\"", x[[1L]], paste0(x[[2L]], collapse = ", "))
}
现在我们已经准备好编写我们的函数,用于从数据集中随机生成规则。思路是首先从所有变量中随机select(第一个id
除外),然后对每个select应用random_rule
,最后总结结果。
random_rule <- function(dt) {
out <- vapply(
dt[random_pick(names(dt)[-1L])[[2L]]],
report(random_select), character(1L)
)
paste(names(out), out, collapse = ", ")
}
因此,我们可以根据需要简单地进行多次迭代
set.seed(123)
data.frame(iteration = 1:10, results = replicate(10L, random_rule(my_data)))
结果
> set.seed(123)
> data.frame(iteration = 1:10, records = replicate(10L, random_rule(my_data)))
iteration
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
records
1 num_var_2 < 12.51, num_var_3 > 41.50, factor_var_1 = "A, B"
2 num_var_1 < 11.16, num_var_3 > 15.63, num_var_4 > -3.87, factor_var_2 = "BB", factor_var_4 = "AAAA, BBBB, DDDD"
3 num_var_1 < 9.87, num_var_2 < -1.32, num_var_3 > -5.54, num_var_4 > 24.09, num_var_5 < 3.28, factor_var_2 = "AA, BB, CC", factor_var_3 = "CCC"
4 num_var_1 > 9.72, num_var_2 > -1.93, num_var_3 < 43.27, num_var_4 < 32.11, num_var_5 > -12.77, factor_var_1 = "B", factor_var_2 = "AA", factor_var_4 = "AAAA, BBBB, DDDD", factor_var_5 = "AAAA"
5 num_var_1 > 10.51, num_var_2 > 13.61, num_var_3 > 22.14, num_var_4 < -2.75, factor_var_1 = "A, B, C", factor_var_3 = "AAA", factor_var_4 = "BBBB, DDDD, EEEE"
6 factor_var_1 = "A, B, C", factor_var_5 = "BBBB, CCCC, EEEE"
7 num_var_1 > 9.34, num_var_2 < 18.59, num_var_3 < 7.39, num_var_4 > 16.66, num_var_5 > 35.48, factor_var_1 = "C", factor_var_2 = "AA, BB, CC", factor_var_4 = "AAAA, BBBB, CCCC"
8 num_var_1 > 10.66, num_var_2 > 25.74, num_var_3 > 13.81, num_var_4 > 31.73, num_var_5 > -2.40, factor_var_1 = "A, B, C", factor_var_2 = "AA, BB", factor_var_3 = "AAA, CCC, DDD", factor_var_4 = "AAAA, BBBB, CCCC, DDDD, EEEE", factor_var_5 = "DDDD"
9 num_var_1 < 10.78, num_var_2 < 11.86, num_var_3 < -7.95, num_var_4 < 7.12, num_var_5 > 39.57, factor_var_1 = "A, B, C", factor_var_2 = "AA, BB, CC", factor_var_3 = "CCC", factor_var_4 = "BBBB, EEEE", factor_var_5 = "AAAA, BBBB, CCCC, DDDD, EEEE"
10 num_var_1 < 7.63, num_var_2 > 19.04, num_var_4 > 37.87, num_var_5 < -14.85, factor_var_1 = "A, B", factor_var_2 = "AA, CC", factor_var_4 = "AAAA, CCCC"
把所有东西放在一起
random_pick <- function(x) {
sample_size <- sample.int(length(x), 1L)
out <- x[sort(sample.int(length(x), sample_size))]
list("=", out)
}
random_trunc <- function(x) {
rng <- range(x)
cutoff <- runif(1L, rng[[1L]], rng[[2L]])
sgn <- c("<", ">")[[sample.int(2L, 1L)]]
list(sgn, cutoff)
}
random_select <- function(x) {
if (is.numeric(x))
return(random_trunc(x))
if (is.factor(x))
return(random_pick(levels(x)))
random_pick(unique(x))
}
report <- function(f) function(...) {
x <- f(...)
if (x[[1L]] != "=")
return(sprintf("%s %.2f", x[[1L]], x[[2L]]))
sprintf("%s \"%s\"", x[[1L]], paste0(x[[2L]], collapse = ", "))
}
random_rule <- function(dt) {
out <- vapply(
dt[random_pick(names(dt)[-1L])[[2L]]],
report(random_select), character(1L)
)
paste(names(out), out, collapse = ", ")
}
set.seed(123)
data.frame(iteration = 1:10, records = replicate(10L, random_rule(my_data)))