plotly 热图的缓慢浏览器渲染

slow browser rendering of plotly heatmap

我正在渲染 212 行 x 64 列 DF 的整数 (final_df),范围从 0 到 6 作为(无注释)绘图注释热图。我在我的浏览器 (microsoft edge) 中使用来自 fig.write_html() 的文件执行此操作。最终的热图在我的浏览器中呈现得非常慢,以至于我收到 'page not responding' 警告,而且图表的任何缩放 in/out 也非常慢。鉴于 df 没有那么大,这令人惊讶。

任何人都可以建议这是为什么以及如何加快速度吗?

谢谢, 蒂姆

def discrete_colorscale(bvals, colors):
    #https://chart-studio.plotly.com/~empet/15229/heatmap-with-a-discrete-colorscale/#/
    """
    bvals - list of values bounding intervals/ranges of interest
    colors - list of rgb or hex colorcodes for values in [bvals[k], bvals[k+1]],0<=k < len(bvals)-1
    returns the plotly  discrete colorscale
    """
    if len(bvals) != len(colors)+1:
        raise ValueError('len(boundary values) should be equal to  len(colors)+1')
    bvals = sorted(bvals)     
    nvals = [(v-bvals[0])/(bvals[-1]-bvals[0]) for v in bvals]  #normalized values
    
    dcolorscale = [] #discrete colorscale
    for k in range(len(colors)):
        dcolorscale.extend([[nvals[k], colors[k]], [nvals[k+1], colors[k]]])
    return dcolorscale


#final_df is a 212 row x 64 col df of ints ranging from 0 to 6
#cell_df is an empty 212x64 df of empty strings to remove cell labelling behaviour
cell_df = final_df.applymap(lambda x: annot_map.get(x, x)) 
cell_labels = cell_df.values.tolist()
bvals = [0,1,2,3,4,5,6,7]

colors_map = ['rgb(244,244,255)', #whiteish 
              'rgb(255, 128, 0)', #orange 
              'rgb(255,0,0)', #red 
              'rgb(0, 0, 255)', #blue 
              'rgb(128, 128, 128)', #grey 
              'rgb(0, 255, 0)', #green 
              'rgb(192, 192, 192)'] #light grey

dcolorsc = discrete_colorscale(bvals, colors_map)
bvals = np.array(bvals)
tickvals = [np.mean(bvals[k:k+2]) for k in range(len(bvals)-1)]
ticktext  = ['param 1', 
             'param 2',
             'param 3',
             'param 4',
             'param 5',
             'param 6',
             'param 7']

fig_df = ff.create_annotated_heatmap(final_df.values.tolist(), 
                                      x= list(final_df.columns), 
                                      y=list(final_df.index), 
                                      annotation_text  = cell_labels, 
                                      colorscale=dcolorsc,
                                      colorbar = dict(thickness=25, 
                                                      tickvals=tickvals, 
                                                      ticktext=ticktext),
                                      showscale  = True,
                                      zmin=0, zmax=7,
                                      ygap = 1,
                                      xgap = 1,
                                      )
fig_df.update_layout(
    xaxis={'title' : 'ID 1'},
    yaxis = {'title' : 'ID 2'},
    yaxis_nticks = len(final_df.index),
    xaxis_nticks = len(final_df.columns)
    )

fig_df.write_html(results_file_df)

我怀疑这些注释对于 plotly 渲染来说非常昂贵。可能是即使你将一个 212x64 的空字符串数组传递给 annotation_text 参数,plotly 仍然必须遍历它们以确定没有要添加的注释。

我用 0-6 的随机整数创建了一个 212x64 数组,它在我的浏览器中呈现也很慢,我收到了与您相同的“页面未响应”警告。

当我使用 go.heatmap 时,我能够获得看起来与 ff.create_annotated_heatmap 相同的情节,这将执行时间从 5-6 秒缩短到 0.66 秒,并且它还在浏览器中响应更快。

这似乎比创建带注释的热图而不使用注释更直接(是否有特定原因需要 ff.create_annotated_heatmap 而不是 go.heatmap?)

import numpy as np
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objects as go

import time
start_time = time.time()

def discrete_colorscale(bvals, colors):
    #https://chart-studio.plotly.com/~empet/15229/heatmap-with-a-discrete-colorscale/#/
    """
    bvals - list of values bounding intervals/ranges of interest
    colors - list of rgb or hex colorcodes for values in [bvals[k], bvals[k+1]],0<=k < len(bvals)-1
    returns the plotly  discrete colorscale
    """
    if len(bvals) != len(colors)+1:
        raise ValueError('len(boundary values) should be equal to  len(colors)+1')
    bvals = sorted(bvals)     
    nvals = [(v-bvals[0])/(bvals[-1]-bvals[0]) for v in bvals]  #normalized values
    
    dcolorscale = [] #discrete colorscale
    for k in range(len(colors)):
        dcolorscale.extend([[nvals[k], colors[k]], [nvals[k+1], colors[k]]])
    return dcolorscale


#final_df is a 212 row x 64 col df of ints ranging from 0 to 6
#cell_df is an empty 212x64 df of empty strings to remove cell labelling behaviour

## recreate your dfs

np.random.seed(42)
final_df = pd.DataFrame(np.random.randint(0,6,size=(212, 64)), columns=list(range(64)))

# cell_df = final_df.applymap(lambda x: annot_map.get(x, x)) 
cell_df = pd.DataFrame(np.array(['']*212*64).reshape(212,64), columns=list(range(64)))
cell_labels = cell_df.values.tolist()
bvals = [0,1,2,3,4,5,6,7]

colors_map = ['rgb(244,244,255)', #whiteish 
              'rgb(255, 128, 0)', #orange 
              'rgb(255,0,0)', #red 
              'rgb(0, 0, 255)', #blue 
              'rgb(128, 128, 128)', #grey 
              'rgb(0, 255, 0)', #green 
              'rgb(192, 192, 192)'] #light grey

dcolorsc = discrete_colorscale(bvals, colors_map)
bvals = np.array(bvals)
tickvals = [np.mean(bvals[k:k+2]) for k in range(len(bvals)-1)]
ticktext  = ['param 1', 
             'param 2',
             'param 3',
             'param 4',
             'param 5',
             'param 6',
             'param 7']

# fig_df = ff.create_annotated_heatmap(final_df.values.tolist(), 
#                                       x= list(final_df.columns), 
#                                       y=list(final_df.index), 
#                                       annotation_text  = cell_labels, 
#                                       colorscale=dcolorsc,
#                                       colorbar = dict(thickness=25, 
#                                                       tickvals=tickvals, 
#                                                       ticktext=ticktext),
#                                       showscale  = True,
#                                       zmin=0, zmax=7,
#                                       ygap = 1,
#                                       xgap = 1,
#                                       )

fig_df = go.Figure([go.Heatmap(
    z=final_df,
    colorscale=dcolorsc,
    colorbar=dict(
        thickness=25, 
        tickvals=tickvals, 
        ticktext=ticktext),
    showscale=True,
    zmin=0, zmax=7,
    ygap=1,
    xgap=1,
    )
])

fig_df.update_layout(
    xaxis={'title' : 'ID 1'},
    yaxis = {'title' : 'ID 2'},
    yaxis_nticks = len(final_df.index),
    xaxis_nticks = len(final_df.columns)
    )

fig_df.show()

print(f"Program executed in {time.time() - start_time} seconds")

## original code with figure_factory annotated heatmap: Program executed in 5.351915121078491 seconds
## modified code with graph_objects heatmap: Program executed in 0.6627509593963623 seconds
# fig_df.write_html(results_file_df)