连接多个具有相同列名的 CSV

Concat multiple CSV's with the same column name

我在连接这些 pandas 数据帧时遇到了问题,因为我不断收到一条错误消息 pandas.errors.InvalidIndexError: Reindexing only valid with uniquely valued Index objects 我也在努力让我的代码不那么笨拙,运行 更流畅。我还想知道是否有一种方法可以使用 python 在一个 csv 上获取多个页面。任何帮助都会很棒。

import requests
from bs4 import BeautifulSoup
import pandas as pd

headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36'}

URL = "https://www.collincad.org/propertysearch?situs_street=Willowgate&situs_street_suffix" \
      "=&isd%5B%5D=any&city%5B%5D=any&prop_type%5B%5D=R&prop_type%5B%5D=P&prop_type%5B%5D=MH&active%5B%5D=1&year=2021&sort=G&page_number=1"

t = URL + "&page_number="
URL2 = t + "2"
URL3 = t + "3"

s = requests.Session()

data = []

page = s.get(URL,headers=headers)
page2 = s.get(URL2, headers=headers)
page3 = s.get(URL3, headers=headers)

soup = BeautifulSoup(page.content, "lxml")
soup2 = BeautifulSoup(page2.content, "lxml")
soup3 = BeautifulSoup(page3.content, "lxml")


for row in soup.select('#propertysearchresults tr'):
    data.append([c.get_text(' ',strip=True) for c in row.select('td')])
for row in soup2.select('#propertysearchresults tr'):
    data.append([c.get_text(' ',strip=True) for c in row.select('td')])
for row in soup3.select('#propertysearchresults tr'):
    data.append([c.get_text(' ',strip=True) for c in row.select('td')])


df1 = pd.DataFrame(data[1:], columns=data[0])
df2 = pd.DataFrame(data[2:], columns=data[1])
df3 = pd.DataFrame(data[3:], columns=data[2])

final = pd.concat([df1, df2, df3], axis=0)

final.to_csv('Street.csv', encoding='utf-8')

通常人们会遍历页码并连接数据框列表,但如果你只有三页,你的代码就没问题。

因为 for row in ... 总是写入 data,你的最终数据帧是 df1,但你只需要删除 列名 行。

final = df1[df1['Property ID ↓ Geographic ID ↓']!='Property ID ↓ Geographic ID ↓']

会发生什么?

如前所述@Zach Young data 已经保存了所有你想转换成 one 数据帧的行。所以这不是pandas的问题,而是如何收集信息的问题。

如何修复?

基于您问题中代码的方法是选择更具体的 table 数据 - 请注意选择中的 tbody,这将排除 headers:

for row in soup.select('#propertysearchresults tbody tr'):
    data.append([c.get_text(' ',strip=True) for c in row.select('td')])

创建数据框时,您可以另外设置列 headers:

pd.DataFrame(data, columns=[c.get_text(' ',strip=True) for c in soup.select('#propertysearchresults thead td')])

例子

这将展示如何迭代包含您的 table 的网站的不同页面:

import requests
from bs4 import BeautifulSoup
import pandas as pd

headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36'}

URL = "https://www.collincad.org/propertysearch?situs_street=Willowgate&situs_street_suffix" \
      "=&isd%5B%5D=any&city%5B%5D=any&prop_type%5B%5D=R&prop_type%5B%5D=P&prop_type%5B%5D=MH&active%5B%5D=1&year=2021&sort=G&page_number=1"

s = requests.Session()

data = []
while True:

    page = s.get(URL,headers=headers)
    soup = BeautifulSoup(page.content, "lxml")

    for row in soup.select('#propertysearchresults tbody tr'):
        data.append([c.get_text(' ',strip=True) for c in row.select('td')])

    if (a := soup.select_one('#page_selector strong + a')):
        URL = "https://www.collincad.org"+a['href']
    else:
        break


pd.DataFrame(data, columns=[c.get_text(' ',strip=True) for c in soup.select('#propertysearchresults thead td')])

输出

Property ID ↓ Geographic ID ↓ Owner Name Property Address Legal Description 2021 Market Value
1 2709013 R-10644-00H-0010-1 PARTHASARATHY SURESH & ANITHA HARIKRISHNAN 12209 Willowgate Dr Frisco, TX 75035 Ridgeview At Panther Creek Phase 2, Blk H, Lot 1 3,019
... ... ... ... ... ...
61 2129238 R-4734-00C-0110-1 HEPFER ARRON 990 Willowgate Dr Prosper, TX 75078 Willow Ridge Phase One, Blk C, Lot 11 9,795

而不是你最后几行代码:

df1 = pd.DataFrame(data[1:], columns=data[0])
df2 = pd.DataFrame(data[2:], columns=data[1])
df3 = pd.DataFrame(data[3:], columns=data[2])

final = pd.concat([df1, df2, df3], axis=0)

final.to_csv('Street.csv', encoding='utf-8')

你可以使用这个(避免分割成不同的数据帧和连接):

final = pd.DataFrame(data[1:], columns=data[0])   # Sets the first row as the column names
final = final.iloc[:,1:]   # Gets rid of the additional index column