使用 ANOVA w/repeated 测量时出现意外错误:lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) 中的错误:0(非 NA ) 个案
Unexpected error while using ANOVA w/repeated measures: Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) : 0 (non-NA) cases
我有四个导出和处理相同的数据集(尽管由于 Landsat 场景的可用性而大小不同)
我正在尝试使用以下公式计算方差分析:
res.aov <- anova_test(
data = LST_Weather_dataset_ANOVA, dv = LST, wid = JulianDay,
within = c(Buffer, TimePeriod),
effect.size = "ges",
detailed = TRUE,
)
get_anova_table(res.aov, correction = "auto")
在哪里:
*) LST = 以 C 为单位的表面温度偏差
*) JulianDay = 自年初以来的天数
*) Buffer = 一个值 100-1900 - 太阳能发电厂边界向外的 19 个区域之一(每个 100m 宽)
*) TimePeriod = 太阳能发电厂pre-/post-construction对应值为0或1的因子。
目的是调查安装施工是否影响了邻近地表温度。
方差分析在三个站点成功运行,但在第四个站点没有运行并失败并显示错误:
Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
0 (non-NA) cases
我有 4 列 381 行数据(摘录如下),我在这里能想到的唯一区别是我不得不从时间序列中删除两个成对的月份,因为其中一个月份的数据不可用.这意味着有 20 个月的数据,而不是 24 个月。每个其他处理步骤都是相同的。
在线阅读我已经搜索了N/As(有none),但由于每个单元格都有数据,因此看不到没有值的级别。不过,我不知道如何正确评估这一点,因为这似乎是错误的根源。
我希望有人知道所需的代码and/or能够提出前进的方向。
Buffer LST JulianDay TimePeriod
1800 -0.04576149 73 2
1900 -0.03422945 73 2
1900 -0.02089755 302 1
1900 -0.02062432 96 1
1900 -0.01465229 192 1
1900 -0.00643754 128 1
1900 -0.00333345 105 2
1800 -0.00266312 366 1
1900 -0.00181226 201 2
1900 -0.00158173 169 2
1900 -1.81E-05 41 2
1800 0.00144813 128 1
and 367 additional rows...
[编辑]
根据以下评论:
- dput() 整个数据帧
- dput() 子集(如建议的那样)
感谢@Dion 注意到 anova_test 来自 RStatix 包。
1)
> dput(LST_Weather_dataset_ANOVA)
structure(list(Buffer = c(100L, 200L, 300L, 400L, 500L, 600L,
700L, 800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L), LST = c(0.91797777, 0.95083024, 0.79129483,
0.74791195, 0.68740945, 0.64516119, 0.74870729, 0.78357522, 0.83663769,
0.82156894, 0.77440129, 0.62769619, 0.52052404, 0.46497939, 0.34456476,
0.20359411, 0.11688336, 0.04136486, -0.02089755, 1.15111659,
1.20353638, 1.11717501, 1.0286145, 0.90984545, 0.82983601, 0.78186792,
0.73227976, 0.6989393, 0.65015275, 0.56241798, 0.39651023, 0.34213091,
0.3386525, 0.24000145, 0.11809023, 0.07704512, -0.00266312, 0.01273022,
1.04229626, 1.14347392, 1.1156609, 1.10575157, 1.01202522, 0.77829087,
0.80477079, 0.79677169, 0.83116477, 0.83242401, 0.82394197, 0.72073306,
0.64099082, 0.58188225, 0.43328083, 0.28349521, 0.19752629, 0.10636456,
0.01987005, 0.74458844, 0.71512573, 0.6395358, 0.65294657, 0.63325921,
0.56155255, 0.60860815, 0.60614753, 0.59989994, 0.58766288, 0.57257261,
0.50018929, 0.4367402, 0.40497079, 0.31822141, 0.2300726, 0.16928876,
0.09449034, 0.01799424, 0.82747052, 0.78262774, 0.65488597, 0.62609552,
0.60057131, 0.59950609, 0.6609992, 0.6876772, 0.73196883, 0.75516596,
0.75554112, 0.64167458, 0.54703129, 0.49947692, 0.38230481, 0.25519237,
0.16087274, 0.07759223, 0.00820849, 0.75009747, 0.71421977, 0.62411035,
0.58621041, 0.58438012, 0.61346156, 0.72712994, 0.81372726, 0.87579554,
0.88934787, 0.87369461, 0.74686202, 0.64084028, 0.5599638, 0.40021941,
0.23612052, 0.13408522, 0.04484869, -0.02062432, 0.22133116,
0.28562902, 0.24359043, 0.17788898, 0.16563242, 0.11740664, 0.10102937,
0.07328697, 0.07948283, 0.07521508, 0.08526232, 0.0548022, 0.04632606,
0.06670398, 0.03262545, 0.00650875, 0.01186519, 0.00144813, -0.00643754,
0.26360849, 0.22139941, 0.16915041, 0.13499715, 0.12846785, 0.15351528,
0.15321108, 0.13963269, 0.13413671, 0.13097696, 0.15897844, 0.15489366,
0.12600815, 0.12363834, 0.0943688, 0.07324289, 0.0565765, 0.04005241,
0.01346488, 0.42361198, 0.39149841, 0.29086274, 0.21492842, 0.20664552,
0.24524285, 0.30548979, 0.35256808, 0.37350282, 0.38680061, 0.38567758,
0.31177736, 0.24643091, 0.22001284, 0.14356522, 0.07076854, 0.04168654,
0.01276553, -0.01465229, 0.57032414, 0.50658577, 0.41717664,
0.36134446, 0.35794989, 0.38457285, 0.43700723, 0.48358206, 0.50516801,
0.50086146, 0.49398709, 0.41516438, 0.33165215, 0.28357127, 0.20030152,
0.11993505, 0.08438345, 0.05755944, 0.01071499, 0.04963208, 0.34087747,
0.38385889, 0.40408637, 0.41182138, 0.15662208, 0.18857013, 0.17978741,
0.1533216, 0.1451422, 0.14890638, 0.14090521, 0.1782449, 0.23624089,
0.21003477, 0.13812217, 0.10759364, 0.07225312, 0.03185378, 0.27507486,
0.54404521, 0.56568824, 0.58543167, 0.49124799, 0.28299777, 0.27514982,
0.27526446, 0.27376722, 0.24620415, 0.22871699, 0.19647326, 0.2450593,
0.27133386, 0.15248773, 0.06240341, 0.04933824, 0.03356535, -1.81e-05,
0.21776379, 0.37010032, 0.32743525, 0.30588107, 0.31226738, 0.30518286,
0.32637517, 0.31003415, 0.23691586, 0.1985241, 0.16143326, 0.12384526,
0.11556386, 0.09243356, 0.05773894, 0.03660942, 0.02173758, -0.04576149,
-0.03422945, 0.06214728, 0.26440563, 0.24838816, 0.22704611,
0.17230754, 0.15660109, 0.18689433, 0.24464547, 0.28273218, 0.29602945,
0.29992488, 0.24679735, 0.24521192, 0.23913767, 0.15081173, 0.08724556,
0.05561237, 0.02530266, -0.00333345, 0.11993489, 0.20504424,
0.17323488, 0.14541868, 0.10994579, 0.12741154, 0.17959797, 0.22553943,
0.26564836, 0.29760832, 0.3207305, 0.28592135, 0.26551685, 0.2493214,
0.15767906, 0.0883716, 0.05058495, 0.02207594, 0.00162532, 0.05621313,
0.08020623, 0.05187855, 0.02643543, 0.02422505, 0.05372454, 0.09563737,
0.14735627, 0.18199015, 0.22456299, 0.25302274, 0.21978124, 0.19092835,
0.18255829, 0.11850551, 0.0581734, 0.03406168, 0.01868243, -0.00158173,
0.00980756, 0.07077972, 0.05126985, 0.03126771, 0.01828044, 0.00678076,
0.03566275, 0.05622289, 0.07218645, 0.08767578, 0.11078182, 0.08827425,
0.08881865, 0.10037876, 0.05952601, 0.03440435, 0.01843206, 0.0091852,
-0.00181226, 0.08737325, 0.14470842, 0.13066747, 0.12324597,
0.12014198, 0.13435757, 0.17843025, 0.19926835, 0.20503774, 0.20485414,
0.2124073, 0.1864257, 0.18810996, 0.20665551, 0.13839744, 0.08488387,
0.06246853, 0.03463723, 0.00349753, 0.35245488, 0.57692156, 0.64897028,
0.67306088, 0.68344534, 0.56106697, 0.52144197, 0.49250191, 0.47494065,
0.4359944, 0.39638743, 0.32554099, 0.28717774, 0.2826675, 0.22703594,
0.18186983, 0.15875118, 0.09672536, 0.04305742, 0.24294606, 0.54654222,
0.56344638, 0.53312729, 0.47324972, 0.34482643, 0.34915085, 0.33729055,
0.32086985, 0.29578347, 0.25030669, 0.17928298, 0.17007511, 0.18375903,
0.15222616, 0.10934224, 0.07536797, 0.04154465, 0.02550096),
JulianDay = c(302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L,
302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L,
302L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L,
366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 64L, 64L, 64L, 64L, 64L,
64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L,
64L, 64L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 96L, 96L, 96L,
96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L,
96L, 96L, 96L, 96L, 128L, 128L, 128L, 128L, 128L, 128L, 128L,
128L, 128L, 128L, 128L, 128L, 128L, 128L, 128L, 128L, 128L,
128L, 128L, 160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L,
160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L,
160L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L,
192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L,
224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L,
224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 73L, 73L,
73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L,
73L, 73L, 73L, 73L, 73L, 105L, 105L, 105L, 105L, 105L, 105L,
105L, 105L, 105L, 105L, 105L, 105L, 105L, 105L, 105L, 105L,
105L, 105L, 105L, 137L, 137L, 137L, 137L, 137L, 137L, 137L,
137L, 137L, 137L, 137L, 137L, 137L, 137L, 137L, 137L, 137L,
137L, 137L, 169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L,
169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L,
169L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L,
201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L,
217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L,
217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 313L,
313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L,
313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L, 361L, 361L,
361L, 361L, 361L, 361L, 361L, 361L, 361L, 361L, 361L, 361L,
361L, 361L, 361L, 361L, 361L, 361L, 361L), TimePeriod = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L)), class = "data.frame", row.names = c(NA,
-380L))
> dput(LST_Weather_dataset_ANOVA[sample(1:nrow(LST_Weather_dataset_ANOVA), 50),])
structure(list(Buffer = c(800L, 1400L, 500L, 200L, 400L, 1400L,
100L, 1600L, 1800L, 100L, 1400L, 1500L, 900L, 700L, 800L, 600L,
400L, 1300L, 500L, 700L, 700L, 300L, 700L, 200L, 200L, 500L,
500L, 900L, 1000L, 1300L, 1400L, 1600L, 700L, 400L, 500L, 200L,
400L, 1500L, 1400L, 800L, 500L, 1200L, 1500L, 1900L, 600L, 800L,
100L, 1000L, 900L, 1100L), LST = c(0.48358206, 0.46497939, 0.41182138,
0.07077972, 0.17788898, 0.18255829, 0.21776379, 0.03660942, 0.04154465,
0.42361198, 0.49947692, 0.38230481, 0.28273218, 0.18857013, 0.33729055,
0.56106697, 0.13499715, 0.28717774, 0.12014198, 0.78186792, 0.74870729,
0.56344638, 0.18689433, 0.54404521, 0.78262774, 0.60057131, 1.01202522,
0.20503774, 0.13097696, 0.34213091, 0.5599638, 0.08724556, 0.17843025,
1.0286145, 0.01828044, 0.22139941, 0.67306088, 0.15248773, 0.22001284,
0.27526446, 0.02422505, 0.50018929, 0.31822141, 0.01799424, 0.56155255,
0.13963269, 0.27507486, 0.29578347, 0.18199015, 0.3207305), JulianDay = c(224L,
302L, 9L, 201L, 128L, 169L, 73L, 73L, 361L, 192L, 80L, 80L, 105L,
9L, 361L, 313L, 160L, 313L, 217L, 366L, 302L, 361L, 105L, 41L,
80L, 80L, 16L, 217L, 160L, 366L, 96L, 105L, 217L, 366L, 201L,
160L, 313L, 41L, 192L, 41L, 169L, 64L, 64L, 64L, 64L, 160L, 41L,
361L, 169L, 137L), TimePeriod = c(1L, 1L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L)), row.names = c(179L,
14L, 195L, 306L, 118L, 299L, 229L, 244L, 379L, 153L, 90L, 91L,
256L, 197L, 369L, 348L, 137L, 355L, 328L, 26L, 7L, 364L, 254L,
211L, 78L, 81L, 43L, 332L, 143L, 32L, 109L, 263L, 330L, 23L,
309L, 135L, 346L, 224L, 166L, 217L, 290L, 69L, 72L, 76L, 63L,
141L, 210L, 371L, 294L, 277L), class = "data.frame")
昨晚熨烫时,我想知道 JulianDay
是否可能是错误的来源。它是从因变量数据中导出的 Landsat 场景的日期导出的,因此每个站点都不同。
编辑数据框以将 JulianDay
列替换为 Month
并将代码修改为:
str(LST_Weather_dataset_ANOVA)
res.aov <- anova_test(
data = LST_Weather_dataset_ANOVA, dv = LST, wid = Month,
within = c(Buffer, TimePeriod),
effect.size = "ges",
detailed = TRUE,
)
get_anova_table(res.aov, correction = "auto")
...ANOVA 测试运行成功:
> res.aov <- anova_test(
+ data = LST_Weather_dataset_ANOVA, dv = LST, wid = Month,
+ within = c(Buffer, TimePeriod),
+ effect.size = "ges",
+ detailed = TRUE,
+ )
> get_anova_table(res.aov, correction = "auto")
ANOVA Table (type III tests)
Effect DFn DFd SSn SSd F p p<.05 ges
1 (Intercept) 1 9 36.781 6.593 50.212 5.75e-05 * 0.735
2 Buffer 18 162 8.042 3.041 23.801 1.81e-36 * 0.378
3 TimePeriod 1 9 5.065 2.506 18.194 2.00e-03 * 0.276
4 Buffer:TimePeriod 18 162 1.713 1.117 13.800 2.71e-24 * 0.114
但是我还是不太明白为什么...
希望这能让有人发表评论并提供解释?
您正在 运行 重复方差分析,这需要在您指定的范围内对每个人进行完整的观察。在您的情况下,您需要确保每个 JulianDay
,Buffer
和 TimePeriod
的每个组合的观察都是完整的
我们可以使用 table()
将其制表,您可以看到所有 JulianDays 都是不完整的,例如 9 和 16:
with(LST_Weather_dataset_ANOVA,table(Buffer,TimePeriod,JulianDay))[,,c("9","16")]
, , JulianDay = 9
TimePeriod
Buffer 1 2
100 0 1
200 0 1
300 0 1
400 0 1
500 0 1
600 0 1
700 0 1
800 0 1
900 0 1
1000 0 1
1100 0 1
1200 0 1
1300 0 1
1400 0 1
1500 0 1
1600 0 1
1700 0 1
1800 0 1
1900 0 1
, , JulianDay = 16
TimePeriod
Buffer 1 2
100 1 0
200 1 0
300 1 0
400 1 0
500 1 0
600 1 0
700 1 0
800 1 0
900 1 0
1000 1 0
1100 1 0
1200 1 0
1300 1 0
1400 1 0
1500 1 0
1600 1 0
1700 1 0
1800 1 0
1900 1 0
正如您所注意到的,如果您协调站点之间的日期,它将起作用。我不太确定你是如何将 JulianDay 转换为月份的,但是使用你的数据,如果我这样做就可以了
df = LST_Weather_dataset_ANOVA
df$Month = months(strptime(paste("2020",df$JulianDay),"%Y %j"))
df = subset(df,Month %in% c("May","June"))
with(df,table(Buffer,TimePeriod,Month))
, , Month = June
TimePeriod
Buffer 1 2
100 1 1
200 1 1
300 1 1
400 1 1
500 1 1
600 1 1
700 1 1
800 1 1
900 1 1
1000 1 1
1100 1 1
1200 1 1
1300 1 1
1400 1 1
1500 1 1
1600 1 1
1700 1 1
1800 1 1
1900 1 1
, , Month = May
TimePeriod
Buffer 1 2
100 1 1
200 1 1
300 1 1
400 1 1
500 1 1
600 1 1
700 1 1
800 1 1
900 1 1
1000 1 1
1100 1 1
1200 1 1
1300 1 1
1400 1 1
1500 1 1
1600 1 1
1700 1 1
1800 1 1
1900 1 1
你可以看到 6 月和 5 月,它们是完整的(没有零),如果我们 运行 anova,它有效:
res.aov <- anova_test(
data = df, dv = LST, wid = Month,
within = c(Buffer, TimePeriod),
effect.size = "ges",
detailed = TRUE,
)
ANOVA Table (type III tests)
Effect DFn DFd SSn SSd F p p<.05 ges
1 (Intercept) 1 1 1.217 0.005 222.936 4.30e-02 * 0.933
2 Buffer 18 18 0.256 0.026 9.933 5.49e-06 * 0.746
3 TimePeriod 1 1 0.013 0.048 0.274 6.93e-01 0.130
4 Buffer:TimePeriod 18 18 0.181 0.008 21.476 1.20e-08 * 0.674
我有四个导出和处理相同的数据集(尽管由于 Landsat 场景的可用性而大小不同)
我正在尝试使用以下公式计算方差分析:
res.aov <- anova_test(
data = LST_Weather_dataset_ANOVA, dv = LST, wid = JulianDay,
within = c(Buffer, TimePeriod),
effect.size = "ges",
detailed = TRUE,
)
get_anova_table(res.aov, correction = "auto")
在哪里: *) LST = 以 C 为单位的表面温度偏差 *) JulianDay = 自年初以来的天数 *) Buffer = 一个值 100-1900 - 太阳能发电厂边界向外的 19 个区域之一(每个 100m 宽) *) TimePeriod = 太阳能发电厂pre-/post-construction对应值为0或1的因子。
目的是调查安装施工是否影响了邻近地表温度。
方差分析在三个站点成功运行,但在第四个站点没有运行并失败并显示错误:
Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
0 (non-NA) cases
我有 4 列 381 行数据(摘录如下),我在这里能想到的唯一区别是我不得不从时间序列中删除两个成对的月份,因为其中一个月份的数据不可用.这意味着有 20 个月的数据,而不是 24 个月。每个其他处理步骤都是相同的。
在线阅读我已经搜索了N/As(有none),但由于每个单元格都有数据,因此看不到没有值的级别。不过,我不知道如何正确评估这一点,因为这似乎是错误的根源。
我希望有人知道所需的代码and/or能够提出前进的方向。
Buffer LST JulianDay TimePeriod
1800 -0.04576149 73 2
1900 -0.03422945 73 2
1900 -0.02089755 302 1
1900 -0.02062432 96 1
1900 -0.01465229 192 1
1900 -0.00643754 128 1
1900 -0.00333345 105 2
1800 -0.00266312 366 1
1900 -0.00181226 201 2
1900 -0.00158173 169 2
1900 -1.81E-05 41 2
1800 0.00144813 128 1
and 367 additional rows...
[编辑]
根据以下评论:
- dput() 整个数据帧
- dput() 子集(如建议的那样)
感谢@Dion 注意到 anova_test 来自 RStatix 包。
1)
> dput(LST_Weather_dataset_ANOVA)
structure(list(Buffer = c(100L, 200L, 300L, 400L, 500L, 600L,
700L, 800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L, 100L, 200L, 300L, 400L, 500L, 600L, 700L,
800L, 900L, 1000L, 1100L, 1200L, 1300L, 1400L, 1500L, 1600L,
1700L, 1800L, 1900L), LST = c(0.91797777, 0.95083024, 0.79129483,
0.74791195, 0.68740945, 0.64516119, 0.74870729, 0.78357522, 0.83663769,
0.82156894, 0.77440129, 0.62769619, 0.52052404, 0.46497939, 0.34456476,
0.20359411, 0.11688336, 0.04136486, -0.02089755, 1.15111659,
1.20353638, 1.11717501, 1.0286145, 0.90984545, 0.82983601, 0.78186792,
0.73227976, 0.6989393, 0.65015275, 0.56241798, 0.39651023, 0.34213091,
0.3386525, 0.24000145, 0.11809023, 0.07704512, -0.00266312, 0.01273022,
1.04229626, 1.14347392, 1.1156609, 1.10575157, 1.01202522, 0.77829087,
0.80477079, 0.79677169, 0.83116477, 0.83242401, 0.82394197, 0.72073306,
0.64099082, 0.58188225, 0.43328083, 0.28349521, 0.19752629, 0.10636456,
0.01987005, 0.74458844, 0.71512573, 0.6395358, 0.65294657, 0.63325921,
0.56155255, 0.60860815, 0.60614753, 0.59989994, 0.58766288, 0.57257261,
0.50018929, 0.4367402, 0.40497079, 0.31822141, 0.2300726, 0.16928876,
0.09449034, 0.01799424, 0.82747052, 0.78262774, 0.65488597, 0.62609552,
0.60057131, 0.59950609, 0.6609992, 0.6876772, 0.73196883, 0.75516596,
0.75554112, 0.64167458, 0.54703129, 0.49947692, 0.38230481, 0.25519237,
0.16087274, 0.07759223, 0.00820849, 0.75009747, 0.71421977, 0.62411035,
0.58621041, 0.58438012, 0.61346156, 0.72712994, 0.81372726, 0.87579554,
0.88934787, 0.87369461, 0.74686202, 0.64084028, 0.5599638, 0.40021941,
0.23612052, 0.13408522, 0.04484869, -0.02062432, 0.22133116,
0.28562902, 0.24359043, 0.17788898, 0.16563242, 0.11740664, 0.10102937,
0.07328697, 0.07948283, 0.07521508, 0.08526232, 0.0548022, 0.04632606,
0.06670398, 0.03262545, 0.00650875, 0.01186519, 0.00144813, -0.00643754,
0.26360849, 0.22139941, 0.16915041, 0.13499715, 0.12846785, 0.15351528,
0.15321108, 0.13963269, 0.13413671, 0.13097696, 0.15897844, 0.15489366,
0.12600815, 0.12363834, 0.0943688, 0.07324289, 0.0565765, 0.04005241,
0.01346488, 0.42361198, 0.39149841, 0.29086274, 0.21492842, 0.20664552,
0.24524285, 0.30548979, 0.35256808, 0.37350282, 0.38680061, 0.38567758,
0.31177736, 0.24643091, 0.22001284, 0.14356522, 0.07076854, 0.04168654,
0.01276553, -0.01465229, 0.57032414, 0.50658577, 0.41717664,
0.36134446, 0.35794989, 0.38457285, 0.43700723, 0.48358206, 0.50516801,
0.50086146, 0.49398709, 0.41516438, 0.33165215, 0.28357127, 0.20030152,
0.11993505, 0.08438345, 0.05755944, 0.01071499, 0.04963208, 0.34087747,
0.38385889, 0.40408637, 0.41182138, 0.15662208, 0.18857013, 0.17978741,
0.1533216, 0.1451422, 0.14890638, 0.14090521, 0.1782449, 0.23624089,
0.21003477, 0.13812217, 0.10759364, 0.07225312, 0.03185378, 0.27507486,
0.54404521, 0.56568824, 0.58543167, 0.49124799, 0.28299777, 0.27514982,
0.27526446, 0.27376722, 0.24620415, 0.22871699, 0.19647326, 0.2450593,
0.27133386, 0.15248773, 0.06240341, 0.04933824, 0.03356535, -1.81e-05,
0.21776379, 0.37010032, 0.32743525, 0.30588107, 0.31226738, 0.30518286,
0.32637517, 0.31003415, 0.23691586, 0.1985241, 0.16143326, 0.12384526,
0.11556386, 0.09243356, 0.05773894, 0.03660942, 0.02173758, -0.04576149,
-0.03422945, 0.06214728, 0.26440563, 0.24838816, 0.22704611,
0.17230754, 0.15660109, 0.18689433, 0.24464547, 0.28273218, 0.29602945,
0.29992488, 0.24679735, 0.24521192, 0.23913767, 0.15081173, 0.08724556,
0.05561237, 0.02530266, -0.00333345, 0.11993489, 0.20504424,
0.17323488, 0.14541868, 0.10994579, 0.12741154, 0.17959797, 0.22553943,
0.26564836, 0.29760832, 0.3207305, 0.28592135, 0.26551685, 0.2493214,
0.15767906, 0.0883716, 0.05058495, 0.02207594, 0.00162532, 0.05621313,
0.08020623, 0.05187855, 0.02643543, 0.02422505, 0.05372454, 0.09563737,
0.14735627, 0.18199015, 0.22456299, 0.25302274, 0.21978124, 0.19092835,
0.18255829, 0.11850551, 0.0581734, 0.03406168, 0.01868243, -0.00158173,
0.00980756, 0.07077972, 0.05126985, 0.03126771, 0.01828044, 0.00678076,
0.03566275, 0.05622289, 0.07218645, 0.08767578, 0.11078182, 0.08827425,
0.08881865, 0.10037876, 0.05952601, 0.03440435, 0.01843206, 0.0091852,
-0.00181226, 0.08737325, 0.14470842, 0.13066747, 0.12324597,
0.12014198, 0.13435757, 0.17843025, 0.19926835, 0.20503774, 0.20485414,
0.2124073, 0.1864257, 0.18810996, 0.20665551, 0.13839744, 0.08488387,
0.06246853, 0.03463723, 0.00349753, 0.35245488, 0.57692156, 0.64897028,
0.67306088, 0.68344534, 0.56106697, 0.52144197, 0.49250191, 0.47494065,
0.4359944, 0.39638743, 0.32554099, 0.28717774, 0.2826675, 0.22703594,
0.18186983, 0.15875118, 0.09672536, 0.04305742, 0.24294606, 0.54654222,
0.56344638, 0.53312729, 0.47324972, 0.34482643, 0.34915085, 0.33729055,
0.32086985, 0.29578347, 0.25030669, 0.17928298, 0.17007511, 0.18375903,
0.15222616, 0.10934224, 0.07536797, 0.04154465, 0.02550096),
JulianDay = c(302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L,
302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L, 302L,
302L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L,
366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L, 366L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 64L, 64L, 64L, 64L, 64L,
64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L, 64L,
64L, 64L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 96L, 96L, 96L,
96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L, 96L,
96L, 96L, 96L, 96L, 128L, 128L, 128L, 128L, 128L, 128L, 128L,
128L, 128L, 128L, 128L, 128L, 128L, 128L, 128L, 128L, 128L,
128L, 128L, 160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L,
160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L, 160L,
160L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L,
192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L, 192L,
224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L,
224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 224L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 73L, 73L,
73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L, 73L,
73L, 73L, 73L, 73L, 73L, 105L, 105L, 105L, 105L, 105L, 105L,
105L, 105L, 105L, 105L, 105L, 105L, 105L, 105L, 105L, 105L,
105L, 105L, 105L, 137L, 137L, 137L, 137L, 137L, 137L, 137L,
137L, 137L, 137L, 137L, 137L, 137L, 137L, 137L, 137L, 137L,
137L, 137L, 169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L,
169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L, 169L,
169L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L,
201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L, 201L,
217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L,
217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 217L, 313L,
313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L,
313L, 313L, 313L, 313L, 313L, 313L, 313L, 313L, 361L, 361L,
361L, 361L, 361L, 361L, 361L, 361L, 361L, 361L, 361L, 361L,
361L, 361L, 361L, 361L, 361L, 361L, 361L), TimePeriod = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L)), class = "data.frame", row.names = c(NA,
-380L))
> dput(LST_Weather_dataset_ANOVA[sample(1:nrow(LST_Weather_dataset_ANOVA), 50),])
structure(list(Buffer = c(800L, 1400L, 500L, 200L, 400L, 1400L,
100L, 1600L, 1800L, 100L, 1400L, 1500L, 900L, 700L, 800L, 600L,
400L, 1300L, 500L, 700L, 700L, 300L, 700L, 200L, 200L, 500L,
500L, 900L, 1000L, 1300L, 1400L, 1600L, 700L, 400L, 500L, 200L,
400L, 1500L, 1400L, 800L, 500L, 1200L, 1500L, 1900L, 600L, 800L,
100L, 1000L, 900L, 1100L), LST = c(0.48358206, 0.46497939, 0.41182138,
0.07077972, 0.17788898, 0.18255829, 0.21776379, 0.03660942, 0.04154465,
0.42361198, 0.49947692, 0.38230481, 0.28273218, 0.18857013, 0.33729055,
0.56106697, 0.13499715, 0.28717774, 0.12014198, 0.78186792, 0.74870729,
0.56344638, 0.18689433, 0.54404521, 0.78262774, 0.60057131, 1.01202522,
0.20503774, 0.13097696, 0.34213091, 0.5599638, 0.08724556, 0.17843025,
1.0286145, 0.01828044, 0.22139941, 0.67306088, 0.15248773, 0.22001284,
0.27526446, 0.02422505, 0.50018929, 0.31822141, 0.01799424, 0.56155255,
0.13963269, 0.27507486, 0.29578347, 0.18199015, 0.3207305), JulianDay = c(224L,
302L, 9L, 201L, 128L, 169L, 73L, 73L, 361L, 192L, 80L, 80L, 105L,
9L, 361L, 313L, 160L, 313L, 217L, 366L, 302L, 361L, 105L, 41L,
80L, 80L, 16L, 217L, 160L, 366L, 96L, 105L, 217L, 366L, 201L,
160L, 313L, 41L, 192L, 41L, 169L, 64L, 64L, 64L, 64L, 160L, 41L,
361L, 169L, 137L), TimePeriod = c(1L, 1L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L)), row.names = c(179L,
14L, 195L, 306L, 118L, 299L, 229L, 244L, 379L, 153L, 90L, 91L,
256L, 197L, 369L, 348L, 137L, 355L, 328L, 26L, 7L, 364L, 254L,
211L, 78L, 81L, 43L, 332L, 143L, 32L, 109L, 263L, 330L, 23L,
309L, 135L, 346L, 224L, 166L, 217L, 290L, 69L, 72L, 76L, 63L,
141L, 210L, 371L, 294L, 277L), class = "data.frame")
昨晚熨烫时,我想知道 JulianDay
是否可能是错误的来源。它是从因变量数据中导出的 Landsat 场景的日期导出的,因此每个站点都不同。
编辑数据框以将 JulianDay
列替换为 Month
并将代码修改为:
str(LST_Weather_dataset_ANOVA)
res.aov <- anova_test(
data = LST_Weather_dataset_ANOVA, dv = LST, wid = Month,
within = c(Buffer, TimePeriod),
effect.size = "ges",
detailed = TRUE,
)
get_anova_table(res.aov, correction = "auto")
...ANOVA 测试运行成功:
> res.aov <- anova_test(
+ data = LST_Weather_dataset_ANOVA, dv = LST, wid = Month,
+ within = c(Buffer, TimePeriod),
+ effect.size = "ges",
+ detailed = TRUE,
+ )
> get_anova_table(res.aov, correction = "auto")
ANOVA Table (type III tests)
Effect DFn DFd SSn SSd F p p<.05 ges
1 (Intercept) 1 9 36.781 6.593 50.212 5.75e-05 * 0.735
2 Buffer 18 162 8.042 3.041 23.801 1.81e-36 * 0.378
3 TimePeriod 1 9 5.065 2.506 18.194 2.00e-03 * 0.276
4 Buffer:TimePeriod 18 162 1.713 1.117 13.800 2.71e-24 * 0.114
但是我还是不太明白为什么...
希望这能让有人发表评论并提供解释?
您正在 运行 重复方差分析,这需要在您指定的范围内对每个人进行完整的观察。在您的情况下,您需要确保每个 JulianDay
,Buffer
和 TimePeriod
我们可以使用 table()
将其制表,您可以看到所有 JulianDays 都是不完整的,例如 9 和 16:
with(LST_Weather_dataset_ANOVA,table(Buffer,TimePeriod,JulianDay))[,,c("9","16")]
, , JulianDay = 9
TimePeriod
Buffer 1 2
100 0 1
200 0 1
300 0 1
400 0 1
500 0 1
600 0 1
700 0 1
800 0 1
900 0 1
1000 0 1
1100 0 1
1200 0 1
1300 0 1
1400 0 1
1500 0 1
1600 0 1
1700 0 1
1800 0 1
1900 0 1
, , JulianDay = 16
TimePeriod
Buffer 1 2
100 1 0
200 1 0
300 1 0
400 1 0
500 1 0
600 1 0
700 1 0
800 1 0
900 1 0
1000 1 0
1100 1 0
1200 1 0
1300 1 0
1400 1 0
1500 1 0
1600 1 0
1700 1 0
1800 1 0
1900 1 0
正如您所注意到的,如果您协调站点之间的日期,它将起作用。我不太确定你是如何将 JulianDay 转换为月份的,但是使用你的数据,如果我这样做就可以了
df = LST_Weather_dataset_ANOVA
df$Month = months(strptime(paste("2020",df$JulianDay),"%Y %j"))
df = subset(df,Month %in% c("May","June"))
with(df,table(Buffer,TimePeriod,Month))
, , Month = June
TimePeriod
Buffer 1 2
100 1 1
200 1 1
300 1 1
400 1 1
500 1 1
600 1 1
700 1 1
800 1 1
900 1 1
1000 1 1
1100 1 1
1200 1 1
1300 1 1
1400 1 1
1500 1 1
1600 1 1
1700 1 1
1800 1 1
1900 1 1
, , Month = May
TimePeriod
Buffer 1 2
100 1 1
200 1 1
300 1 1
400 1 1
500 1 1
600 1 1
700 1 1
800 1 1
900 1 1
1000 1 1
1100 1 1
1200 1 1
1300 1 1
1400 1 1
1500 1 1
1600 1 1
1700 1 1
1800 1 1
1900 1 1
你可以看到 6 月和 5 月,它们是完整的(没有零),如果我们 运行 anova,它有效:
res.aov <- anova_test(
data = df, dv = LST, wid = Month,
within = c(Buffer, TimePeriod),
effect.size = "ges",
detailed = TRUE,
)
ANOVA Table (type III tests)
Effect DFn DFd SSn SSd F p p<.05 ges
1 (Intercept) 1 1 1.217 0.005 222.936 4.30e-02 * 0.933
2 Buffer 18 18 0.256 0.026 9.933 5.49e-06 * 0.746
3 TimePeriod 1 1 0.013 0.048 0.274 6.93e-01 0.130
4 Buffer:TimePeriod 18 18 0.181 0.008 21.476 1.20e-08 * 0.674