Matplotlib 在 imshow 和绘图之间共享 x 轴
Matplotlib share x-axis between imshow and plot
我正在尝试绘制两个 imshow 和一个相互重叠的图,共享它们的 x 轴。图形布局是使用 gridspec 设置的。
这是一个 MWE:
import matplotlib as mpl
from matplotlib import pyplot as plt
import numpy as np
fig = plt.figure(figsize=(10,8))
gs = fig.add_gridspec(3,2,width_ratios=(1,2),height_ratios=(1,2,2), left=0.1,right=0.9,bottom=0.1,top=0.99, wspace=0.1, hspace=0.1)
ax=fig.add_subplot(gs[2,1])
ax2=fig.add_subplot(gs[2,0], sharey=ax)
ax3=fig.add_subplot(gs[1,0])
ax4=fig.add_subplot(gs[1,1], sharex=ax, sharey=ax3)
ax5=fig.add_subplot(gs[0,1], sharex=ax)
dates = pd.date_range("2020-01-01","2020-01-10 23:00", freq="H")
xs = mpl.dates.date2num(dates)
ys = np.random.random(xs.size)
N = 10
arr = np.random.random((N, N))
arr2 = np.random.random((N, N))
norm=mpl.colors.Normalize(0, arr.max()) # change the min to stretch the color spectrum
pcm = ax.imshow(arr, extent=[xs[0],xs[-1],10,0],norm=norm,aspect='auto')
cax = fig.colorbar(pcm, ax=ax, extend='max') # , location='left'
ax.set_xlabel('date')
cax.set_label('fraction [-]')
# ax.xaxis_date()
myFmt = mpl.dates.DateFormatter('%d.%m')
ax.xaxis.set_major_formatter(myFmt)
norm=mpl.colors.Normalize(0, arr2.max()) # change the min to stretch the color spectrum
pcm = ax4.imshow(arr2, extent=[xs[0],xs[-1],1,0],norm=norm,aspect='auto')
cax4 = fig.colorbar(pcm, ax=ax4, extend='max')
cax4.set_label('fraction [-]')
ax5.plot(xs,ys)
con1 = ConnectionPatch(xyA=(ax2.get_xlim()[0],1), xyB=(ax2.get_xlim()[0],1),
coordsA="data", coordsB="data", connectionstyle=mpl.patches.ConnectionStyle("Bar", fraction=-0.05),
axesA=ax2, axesB=ax3, arrowstyle="-", color='r')
con2 = ConnectionPatch(xyA=(ax2.get_xlim()[0],0), xyB=(ax2.get_xlim()[0],0),
coordsA="data", coordsB="data", connectionstyle=mpl.patches.ConnectionStyle("Bar", fraction=-0.02),
axesA=ax2, axesB=ax3, arrowstyle="-", color='r')
fig.add_artist(con1)
fig.add_artist(con2)
剧情是这样结束的:
虽然轴似乎是链接的(日期格式应用于所有轴),但它们的范围不同。
注意:两个左轴不能共享同一个 x 轴。
编辑:添加了在使用 constrained_layout 时中断的 ConnectionPatch 连接。
Constrained_layout 是专门为这种情况设计的。它将与上面的 gridspec 解决方案一起使用,但更惯用的是:
import datetime as dt
import matplotlib as mpl
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
fig, axs = plt.subplot_mosaic([['.', 'plot'], ['empty1', 'imtop'],
['empty2', 'imbottom']],
constrained_layout=True,
gridspec_kw={'width_ratios':(1,2),'height_ratios':(1,2,2)})
axs['imtop'].sharex(axs['imbottom'])
axs['plot'].sharex(axs['imtop'])
dates = pd.date_range("2020-01-01","2020-01-10 23:00", freq="H")
xs = mpl.dates.date2num(dates)
ys = np.random.random(xs.size)
N = 10
arr = np.random.random((N, N))
arr2 = np.random.random((N, N))
norm=mpl.colors.Normalize(0, arr.max()) # change the min to stretch the color spectrum
pcm = axs['imtop'].imshow(arr, extent=[xs[0],xs[-1],10,0],norm=norm,aspect='auto')
cax = fig.colorbar(pcm, ax=axs['imtop'], extend='max')
norm=mpl.colors.Normalize(0, arr2.max()) # change the min to stretch the color spectrum
pcm = axs['imbottom'].imshow(arr2, extent=[xs[0],xs[-1],1,0],norm=norm,aspect='auto')
cax4 = fig.colorbar(pcm, ax=axs['imbottom'], extend='max')
axs['plot'].plot(xs,ys)
我正在尝试绘制两个 imshow 和一个相互重叠的图,共享它们的 x 轴。图形布局是使用 gridspec 设置的。 这是一个 MWE:
import matplotlib as mpl
from matplotlib import pyplot as plt
import numpy as np
fig = plt.figure(figsize=(10,8))
gs = fig.add_gridspec(3,2,width_ratios=(1,2),height_ratios=(1,2,2), left=0.1,right=0.9,bottom=0.1,top=0.99, wspace=0.1, hspace=0.1)
ax=fig.add_subplot(gs[2,1])
ax2=fig.add_subplot(gs[2,0], sharey=ax)
ax3=fig.add_subplot(gs[1,0])
ax4=fig.add_subplot(gs[1,1], sharex=ax, sharey=ax3)
ax5=fig.add_subplot(gs[0,1], sharex=ax)
dates = pd.date_range("2020-01-01","2020-01-10 23:00", freq="H")
xs = mpl.dates.date2num(dates)
ys = np.random.random(xs.size)
N = 10
arr = np.random.random((N, N))
arr2 = np.random.random((N, N))
norm=mpl.colors.Normalize(0, arr.max()) # change the min to stretch the color spectrum
pcm = ax.imshow(arr, extent=[xs[0],xs[-1],10,0],norm=norm,aspect='auto')
cax = fig.colorbar(pcm, ax=ax, extend='max') # , location='left'
ax.set_xlabel('date')
cax.set_label('fraction [-]')
# ax.xaxis_date()
myFmt = mpl.dates.DateFormatter('%d.%m')
ax.xaxis.set_major_formatter(myFmt)
norm=mpl.colors.Normalize(0, arr2.max()) # change the min to stretch the color spectrum
pcm = ax4.imshow(arr2, extent=[xs[0],xs[-1],1,0],norm=norm,aspect='auto')
cax4 = fig.colorbar(pcm, ax=ax4, extend='max')
cax4.set_label('fraction [-]')
ax5.plot(xs,ys)
con1 = ConnectionPatch(xyA=(ax2.get_xlim()[0],1), xyB=(ax2.get_xlim()[0],1),
coordsA="data", coordsB="data", connectionstyle=mpl.patches.ConnectionStyle("Bar", fraction=-0.05),
axesA=ax2, axesB=ax3, arrowstyle="-", color='r')
con2 = ConnectionPatch(xyA=(ax2.get_xlim()[0],0), xyB=(ax2.get_xlim()[0],0),
coordsA="data", coordsB="data", connectionstyle=mpl.patches.ConnectionStyle("Bar", fraction=-0.02),
axesA=ax2, axesB=ax3, arrowstyle="-", color='r')
fig.add_artist(con1)
fig.add_artist(con2)
剧情是这样结束的:
虽然轴似乎是链接的(日期格式应用于所有轴),但它们的范围不同。
注意:两个左轴不能共享同一个 x 轴。
编辑:添加了在使用 constrained_layout 时中断的 ConnectionPatch 连接。
Constrained_layout 是专门为这种情况设计的。它将与上面的 gridspec 解决方案一起使用,但更惯用的是:
import datetime as dt
import matplotlib as mpl
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
fig, axs = plt.subplot_mosaic([['.', 'plot'], ['empty1', 'imtop'],
['empty2', 'imbottom']],
constrained_layout=True,
gridspec_kw={'width_ratios':(1,2),'height_ratios':(1,2,2)})
axs['imtop'].sharex(axs['imbottom'])
axs['plot'].sharex(axs['imtop'])
dates = pd.date_range("2020-01-01","2020-01-10 23:00", freq="H")
xs = mpl.dates.date2num(dates)
ys = np.random.random(xs.size)
N = 10
arr = np.random.random((N, N))
arr2 = np.random.random((N, N))
norm=mpl.colors.Normalize(0, arr.max()) # change the min to stretch the color spectrum
pcm = axs['imtop'].imshow(arr, extent=[xs[0],xs[-1],10,0],norm=norm,aspect='auto')
cax = fig.colorbar(pcm, ax=axs['imtop'], extend='max')
norm=mpl.colors.Normalize(0, arr2.max()) # change the min to stretch the color spectrum
pcm = axs['imbottom'].imshow(arr2, extent=[xs[0],xs[-1],1,0],norm=norm,aspect='auto')
cax4 = fig.colorbar(pcm, ax=axs['imbottom'], extend='max')
axs['plot'].plot(xs,ys)