在函数中定义输入文件后丢失输入文件

Missing input files after defining them in function

我正在尝试对打包的 RNAseq 数据进行 QC。我正在使用 Snakemake 作为工作流管理器,并且知道 Snakemake 不喜欢一对多规则。我定义一个检查点可以解决这个问题,但是当我 运行 脚本时,我得到了这条带有规则 fastqc 的错误消息。

MissingInputException in line 49 of /home/user/2022-h1n1/Snakefile:
Missing input files for rule fastqc:
raw/[]_R1.fastq.gz

这是我的 Snakefile,我在规则 download_data 中链接了数据。该文件为 61.1Gb,因此如果您的系统内存不足,则可能不值得下载。任何建议都会有所帮助!

# Snakemake file - input raw reads to generate quant files for analysis in R
configfile: "config.yaml"

import io 
import os
import pandas as pd
import pathlib
from snakemake.exceptions import print_exception, WorkflowError

#----SET VARIABLES----#
PROJ = config["proj_name"]
INPUTDIR = config["raw-data"]
SCRATCH = config["scratch"]
REFERENCE = config["ref"]
OUTPUTDIR = config["outputDIR"]

# Adapters
SE_ADAPTER = config['seq']['SE']
SE_SEQUENCE = config['seq']['trueseq-se']

# Organsim
TRANSCRIPTOME = config['transcriptome']['human']
SPECIES = config['species']['human']

SAMPLE_LIST = glob_wildcards(INPUTDIR + "{basenames}_R1.fastq.gz")

rule all:
    input:
        "finished.txt",
        raw_multi_html = SCRATCH + "fastqc/raw_multiqc.html",
        raw_multi_stats = SCRATCH + "fastqc/raw_multiqc_general_stats.txt",
        raw_qc = expand( SCRATCH + "fastqc/{basenames}_R1_fastqc.zip", basenames=SAMPLE_LIST),
        trim_qc = expand( SCRATCH + "fastqc/{basenames}_R1_trimmed_fastqc.zip", basenames=SAMPLE_LIST)

rule download_data:
    output: "high_quality_files.tgz"
    shell: "curl -L -o {output} https://osf.io/pcxfg/download"

checkpoint decompress_h1n1:
    output: directory(INPUTDIR)
    input: "high_quality_files.tgz"
    params: INPUTDIR
    shell:
        '''
        mkdir -p {params}
        tar xzvf {input} -C {params}
        '''

rule fastqc:
    input:  INPUTDIR + "{basenames}_R1.fastq.gz"
    output:
        raw_html = SCRATCH + "fastqc/{basenames}_R1_fastqc.html",
        raw_zip = SCRATCH + "fastqc/{basenames}_R1_fastqc.zip"
    wrapper:
        "0.80.3/bio/fastqc"

def aggregate_decompress_h1n1(wildcards):
    checkpoint_output = checkpoints.decompress_h1n1.get(**wildcards).output[0]    
    filenames = expand(SCRATCH + "fastqc/{basenames}_R1_fastqc.html",
     SCRATCH + "fastqc/{basenames}_R1_fastqc.zip",
     basenames = glob_wildcards(os.path.join(checkpoint_output, "{basenames}_R1.fastq.gz")).basenames)
    return filenames

rule download_trimmomatic_adapter_file:
    output: REFERENCE + SE_ADAPTER
    shell:
        """
        curl -L {SE_SEQUENCE} -o {output}
        """

rule trimmmomatic_se:
    input: 
        reads= INPUTDIR + "{basenames}_R1.fastq.gz",
        adapters= REFERENCE + SE_ADAPTER,
    output: 
        reads = SCRATCH + "trimmed/{basenames}_R1_trim.fastq.gz",
        unpaired = SCRATCH + "trimmed/{basenames}_R1.unpaired.fastq.gz"
    conda: "rnaseq.yml"
    shell:
        """
        trimmomatic SE {input.reads} \
        {output.reads} {output.unpaired} \
        ILLUMINACLIP:{input.adapters}:2:0:15 LEADING:2 TRAILING:2 \
        SLIDINGWINDOW:4:2 MINLEN:25    
        """

rule fastqc_trim:
    input: SCRATCH + "trimmed/{basenames}_R1_trim.fastq.gz"
    output:
      html = SCRATCH + "fastqc/{basenames}_R1_trimmed_fastqc.html",
      zip = SCRATCH + "fastqc/{basenames}_R1_trimmed_fastqc.zip"
    params: ""
    log:
      SCRATCH + "logs/fastqc/{basenames}_R1_trimmed.log"
    wrapper:
        "0.35.2/bio/fastqc"

rule multiqc:
    input:
        raw_qc = expand(SCRATCH + "fastqc/{basenames}_R1_fastqc.zip", basenames=SAMPLE_LIST),
        trim_qc = expand(SCRATCH + "fastqc/{basenames}_R1_trimmed_fastqc.zip", basenames=SAMPLE_LIST)
    output:
        raw_multi_html = SCRATCH + "fastqc/raw_multiqc.html", 
        raw_multi_stats = SCRATCH + "fastqc/raw_multiqc_general_stats.txt",
        trim_multi_html = SCRATCH + "fastqc/trimmed_multiqc.html", 
        trim_multi_stats = SCRATCH + "fastqc/trimmed_multiqc_general_stats.txt"
    conda: "env/rnaseq.yml"
    shell: 
        """
        multiqc -n multiqc.html {input.raw_qc} #run multiqc
        mv multiqc.html {output.raw_multi_html} #rename html
        mv multiqc_data/multiqc_general_stats.txt {output.raw_multi_stats} #move and rename stats
        rm -rf multiqc_data #clean-up
        #repeat for trimmed data
        multiqc -n multiqc.html {input.trim_qc} #run multiqc
        mv multiqc.html {output.trim_multi_html} #rename html
        mv multiqc_data/multiqc_general_stats.txt {output.trim_multi_stats} #move and rename stats
        rm -rf multiqc_data #clean-up
        """ 

rule download_transcriptome:
    output: REFERENCE + SPECIES
    shell:
        """
        curl -L {TRANSCRIPTOME} -o {output}
        """

rule salmon_index:
    input:
        ref = REFERENCE + SPECIES
    output: directory(OUTPUTDIR + "quant/sc_ensembl_index")
    conda: "env/rnaseq.yml"
    shell:
        """
        salmon index --index {output} --transcripts {input} # --type quasi
        """

rule salmon_quant:
    input:
        reads = SCRATCH + "trimmed/{basenames}_R1_trim.fastq.gz",
        index_dir = OUTPUTDIR + "quant/sc_ensembl_index"
    output: OUTPUTDIR + "{basenames}_quant/quant.sf"
    params:
        outdir= lambda wildcards: OUTPUTDIR + wildcards.sample + "_quant"
    conda: "env/rnaseq.yml"
    shell:
        """
        salmon quant -i {input.index_dir} --libType A -r {input.reads} -o {params.outdir} --seqBias --gcBias --validateMappings
        """

rule finished:
    input: aggregate_decompress_h1n1
    output: "finished.txt"
    shell:
        '''
        touch {output}
        '''

首先,glob_wildcards(INPUTDIR + "{basenames}_R1.fastq.gz") returns 一个包含每个通配符的 key:value 对的通配符对象。如果你想获得基本名称,它应该是 glob_wildcards(INPUTDIR + "{basenames}_R1.fastq.gz").basenames

其次,我假设所有 fastq.gz 文件都是由 decompress_h1n1 检查点生成的,因为您已经在 aggregate_decompress_h1n1 函数中包含了 fastqc 输出。你不应该在规则 all 中再次包含这些输出,这会导致 snakemake 在执行检查点之前尝试执行 fastqc。

第三,你也应该把你的trim_qc输出放在aggregate_decompress_h1n1函数中,基本上它和fastqc是同一个问题,salmon相关规则可能也是一样。

可能有一个潜在的问题,我注意到你使用了 fastqc 的包装器,我记得官方的 fastqc 包装器要求输出必须有 htmlzip,而你有一个 raw 前缀。但是我在官方文档中没有看到 0.80.3 版本,不确定你是否使用其他存储库来访问 wrapper