张量板损失函数中 y 轴的单位是什么?
What is the unit of the y-axis in the tensorboard loss functions?
我正在通过 Tensorflow 训练模型并通过 Tensorboard 进行评估。这是我的总损失函数:
谁能告诉我y轴的单位是什么?起初我认为它是一个比例,但你不会期望它从 > 4 开始。我知道这是分类损失和定位损失的组合,但即使单独的分类损失也从 > 3 开始。
我正在通过终端命令进行训练:
set NVIDIA_VISIBLE_DEVICES=0 & set CUDA_VISIBLE_DEVICES=0 & python object_detection/model_main_tf2.py --pipeline_config_path="V:/Projecten/A70_30_65/Marterkist/Model/ssd_mobilenet_v2_320x320_coco17_tpu-8.config" --model_dir="V:/Projecten/A70_30_65/Marterkist/Training" --alsologtostderr
并通过终端命令进行评估:
python object_detection/model_main_tf2.py --pipeline_config_path="V:/Projecten/A70_30_65/Marterkist/Model/ssd_mobilenet_v2_320x320_coco17_tpu-8.config" --model_dir="V:/Projecten/A70_30_65/Marterkist/Training" --checkpoint_dir="V:/Projecten/A70_30_65/Marterkist/Training" --alsologtostderr
这是关联的 .config
文件:
# SSD with Mobilenet v2
# Trained on COCO17, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 22.2 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 7
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v2_keras'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "V:/Projecten/A70_30_65/Marterkist/Model/ssd_mobilenet_v2_320x320_coco17_tpu-8/checkpoint/ckpt-0"
fine_tune_checkpoint_type: "detection"
batch_size: 32
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 25000
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0003
schedule {
step: 20000
learning_rate: 0.0003
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "V:/Projecten/A70_30_65/Marterkist/Model/labelmap.pbtxt"
tf_record_input_reader {
input_path: "V:/Projecten/A70_30_65/Marterkist/Data/Train/train.record"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "V:/Projecten/A70_30_65/Marterkist/Model/labelmap.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "V:/Projecten/A70_30_65/Marterkist/Data/Train/test.record"
}
}
你配置的相关部分是这样的:
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
classification_weight = localization_weight = 1
意味着总损失只是 class化和本地化损失的总和。 weighted_sigmoid_focal
class化损失计算为-alpha*(1 - p)**gamma*log(p)
,其中p是class概率(详见https://www.tensorflow.org/addons/api_docs/python/tfa/losses/SigmoidFocalCrossEntropy). It is hard to assign some easy-to-interpret sense to it. And weighted_smooth_l1
localization loss is the same as Huber loss引用的文章,不易理解要么。
以上归结为:您看到的绝对值没有任何容易理解的含义。重要的只是相对变化:损失是增加还是减少等
我正在通过 Tensorflow 训练模型并通过 Tensorboard 进行评估。这是我的总损失函数:
谁能告诉我y轴的单位是什么?起初我认为它是一个比例,但你不会期望它从 > 4 开始。我知道这是分类损失和定位损失的组合,但即使单独的分类损失也从 > 3 开始。
我正在通过终端命令进行训练:
set NVIDIA_VISIBLE_DEVICES=0 & set CUDA_VISIBLE_DEVICES=0 & python object_detection/model_main_tf2.py --pipeline_config_path="V:/Projecten/A70_30_65/Marterkist/Model/ssd_mobilenet_v2_320x320_coco17_tpu-8.config" --model_dir="V:/Projecten/A70_30_65/Marterkist/Training" --alsologtostderr
并通过终端命令进行评估:
python object_detection/model_main_tf2.py --pipeline_config_path="V:/Projecten/A70_30_65/Marterkist/Model/ssd_mobilenet_v2_320x320_coco17_tpu-8.config" --model_dir="V:/Projecten/A70_30_65/Marterkist/Training" --checkpoint_dir="V:/Projecten/A70_30_65/Marterkist/Training" --alsologtostderr
这是关联的 .config
文件:
# SSD with Mobilenet v2
# Trained on COCO17, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 22.2 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 7
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v2_keras'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "V:/Projecten/A70_30_65/Marterkist/Model/ssd_mobilenet_v2_320x320_coco17_tpu-8/checkpoint/ckpt-0"
fine_tune_checkpoint_type: "detection"
batch_size: 32
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 25000
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0003
schedule {
step: 20000
learning_rate: 0.0003
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "V:/Projecten/A70_30_65/Marterkist/Model/labelmap.pbtxt"
tf_record_input_reader {
input_path: "V:/Projecten/A70_30_65/Marterkist/Data/Train/train.record"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "V:/Projecten/A70_30_65/Marterkist/Model/labelmap.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "V:/Projecten/A70_30_65/Marterkist/Data/Train/test.record"
}
}
你配置的相关部分是这样的:
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
classification_weight = localization_weight = 1
意味着总损失只是 class化和本地化损失的总和。 weighted_sigmoid_focal
class化损失计算为-alpha*(1 - p)**gamma*log(p)
,其中p是class概率(详见https://www.tensorflow.org/addons/api_docs/python/tfa/losses/SigmoidFocalCrossEntropy). It is hard to assign some easy-to-interpret sense to it. And weighted_smooth_l1
localization loss is the same as Huber loss引用的文章,不易理解要么。
以上归结为:您看到的绝对值没有任何容易理解的含义。重要的只是相对变化:损失是增加还是减少等