迭代读取、操作多个 excel 文件并使用 R 将它们附加到一个数据帧中

Iteratively read, manipulate multiple excel files and append them into one dataframe using R

在一个目录下,我有多个excel个格式相似的文件(您可以从here下载示例文件):

我需要

  1. 循环文件和read_excel(),
  2. 用第二个列名
  3. 改变一个新列name
  4. 将第一列和第二列分别重命名为datevalue,删除最后一列(其原始列名称为1);
  5. 使用 do.call(rbind, df.list)
  6. 将所有 dfs 附加到一个数据帧

我做了什么:

循环获取文件路径:

library(fs)
folder_path <- './test/'
file_paths <- dir_ls(folder_path, regexp = ".xlsx")

函数读取 excels:

read_excel_file <- function(path) {
  df <- read_excel(path = path, header = TRUE)
}

lapply read_excel() 函数到每个 excel 文件:

df.list = lapply(file_paths, function(file) read_excel(file, skip = 2, col_names = FALSE))
df <- do.call(rbind, df.list)

预期结果将是这样的数据框:

         date  value    name
2  2021-01-07  -76.5 J05-J01
3  2021-01-08  -93.5 J05-J01
4  2021-01-15   -305 J05-J01
5  2021-01-22    289 J05-J01
6  2021-01-29  242.5 J05-J01
7  2021-02-05    266 J05-J01
8  2021-02-10  239.5 J05-J01
9  2021-02-19  305.5 J05-J01
10 2021-01-07    323 J01-J09
11 2021-01-08  317.5 J01-J09
12 2021-01-15  527.5 J01-J09
13 2021-01-22    -51 J01-J09
14 2021-01-29  -58.5 J01-J09
15 2021-02-05    -76 J01-J09
16 2021-01-07   76.5 J01-J05
17 2021-01-08   93.5 J01-J05
18 2021-01-15    305 J01-J05
19 2021-01-22   -289 J01-J05
20 2021-01-29 -242.5 J01-J05
21 2021-02-05   -266 J01-J05
22 2021-02-10 -239.5 J01-J05

我如何使用 R 实现这一点?提前致谢。

你可以试试:

library(fs)
library(readxl)

file_paths = list.files("./test/", pattern = "*.xlsx")

df = data.frame()

for(i in file_paths){
  df_temp = read_xlsx(path=paste0("./test/", i))
  df_temp$`1` = names(df_temp)[2]
  names(df_temp) = c("date", "value", "name")
  df = rbind(df, df_temp)
}

rm(df_temp)

输出:

> df
# A tibble: 21 x 3
   date                 value name   
   <dttm>               <dbl> <chr>  
 1 2021-01-07 00:00:00   76.5 J01-J05
 2 2021-01-08 00:00:00   93.5 J01-J05
 3 2021-01-15 00:00:00  305   J01-J05
 4 2021-01-22 00:00:00 -289   J01-J05
 5 2021-01-29 00:00:00 -242.  J01-J05
 6 2021-02-05 00:00:00 -266   J01-J05
 7 2021-02-10 00:00:00 -240.  J01-J05
 8 2021-01-07 00:00:00  323   J01-J09
 9 2021-01-08 00:00:00  318.  J01-J09
10 2021-01-15 00:00:00  528.  J01-J09
# ... with 11 more rows

更新,函数:

read_excel = function(name) {
  df_temp = read_xlsx(path=paste0("./test/", name))
  df_temp$`1` = names(df_temp)[2]
  names(df_temp) = c("date", "value", "name")
  return(df_temp)
}


df = do.call(rbind, lapply(file_paths, read_excel))
library(dplyr)
library(readxl)

files <- list.files()

combined <- bind_rows(
  lapply(
    files,
    function(f) {
      df <- read_xlsx(f) 
      df %>%
        select(date = 1, value = 2) %>%
        mutate(name = colnames(df)[2])
    }
  ) 
)

@ah bon 的替代方案:

read_file <- function(file) {
  df <- read_xlsx(file) 
  df <- df %>%
    select(date = 1, price = 2) %>%
    mutate(name = colnames(df)[2])
  return(df)
}

df <- bind_rows(
  lapply(
    files,
    read_file
  ) 
)

# or `df <- do.call(rbind, lapply(files, read_file))`