是否可以使用 SIMD 对 C 中的非平凡循环进行矢量化? (复用一个输入的多长度 5 双精度点积)
Is it possible to vectorize non-trivial loop in C with SIMD? (multiple length 5 double-precision dot products reusing one input)
我有一个性能关键 C 代码,其中 > 90% 的时间都花在了一个基本操作上:
我使用的C代码是:
static void function(double *X1, double *Y1, double *X2, double *Y2, double *output) {
double Z1, Z2;
int i, j, k;
for (i = 0, j = 0; i < 25; j++) { // sweep Y
Z1 = 0;
Z2 = 0;
for (k = 0; k < 5; k++, i++) { // sweep X
Z1 += X1[k] * Y1[i];
Z2 += X2[k] * Y2[i];
}
output[j] = Z1*Z2;
}
}
长度固定(X为5;Y为25;输出为5)。我已经尝试了我所知道的一切来使它更快。当我使用带有 -O3 -march=native -Rpass-analysis=loop-vectorize -Rpass=loop-vectorize -Rpass-missed=loop-vectorize
的 clang 编译此代码时,我收到此消息:
remark: the cost-model indicates that vectorization is not beneficial [-Rpass-missed=loop-vectorize]
但我认为加快速度的方法是以某种方式使用 SIMD。如有任何建议,我们将不胜感激。
通过分别加载下半部分和上半部分寄存器,您至少可以同时处理 2 个元素。展开 i
两个可能会产生一个小边缘...
__restrict
关键字(如果适用)允许预加载五个常数系数 X1[0..4], X2[0..4]
。如果 X1
或 X2
部分别名输出,最好让编译器知道它(通过使用相同的数组)。这样,随着完整函数的展开,编译器不会不必要地重新加载任何元素。
typedef double __attribute__((vector_size(16))) f2;
void function2(double *X1, double *Y1, double *X2, double *Y2, double *__restrict output) {
double Z1, Z2;
int i = 0, j, k;
for (j = 0; j < 5; j++) { // sweep Y
f2 Z12 = {0.0, 0.0};
for (k = 0; k < 5; k++, i++) {
f2 Y12 = {Y1[i], Y2[i]};
f2 X12 = {X1[k], X2[k]};
Z12 += X12 * Y12;
}
output[j] = Z12[0]*Z12[1];
}
}
如果可能,请考虑交织Y1Y2,X1X3:
void function2(f2 const *X12, f2 const *Y12, double *output) {
int i = 0, j, k;
for (j = 0; j < 5; j++) { // sweep Y
f2 Z12 = X12[0] * Y12[0];
for (k = 1; k < 5; k++, i++) {
Z12 += X12[k] * Y12[k];
}
output[j] = Z12[0]*Z12[1]; // possibly [j * 2]?
}
}
通过内在函数可能会获得稍微更好的性能,但是,这个答案强调自动矢量化。
尝试以下版本,它需要 SSE2 和 FMA3。未经测试。
void function_fma( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 6 registers; the instruction set has 16 of them available, BTW.
const __m128d x1_0 = _mm_loadu_pd( X1 );
const __m128d x1_1 = _mm_loadu_pd( X1 + 2 );
const __m128d x1_2 = _mm_load_sd( X1 + 4 );
const __m128d x2_0 = _mm_loadu_pd( X2 );
const __m128d x2_1 = _mm_loadu_pd( X2 + 2 );
const __m128d x2_2 = _mm_load_sd( X2 + 4 );
// 5 iterations of the outer loop
const double* const y1End = Y1 + 25;
while( Y1 < y1End )
{
// Multiply first 2 values
__m128d z1 = _mm_mul_pd( x1_0, _mm_loadu_pd( Y1 ) );
__m128d z2 = _mm_mul_pd( x2_0, _mm_loadu_pd( Y2 ) );
// Multiply + accumulate next 2 values
z1 = _mm_fmadd_pd( x1_1, _mm_loadu_pd( Y1 + 2 ), z1 );
z2 = _mm_fmadd_pd( x2_1, _mm_loadu_pd( Y2 + 2 ), z2 );
// Horizontal sum both vectors
z1 = _mm_add_sd( z1, _mm_unpackhi_pd( z1, z1 ) );
z2 = _mm_add_sd( z2, _mm_unpackhi_pd( z2, z2 ) );
// Multiply + accumulate the last 5-th value
z1 = _mm_fmadd_sd( x1_2, _mm_load_sd( Y1 + 4 ), z1 );
z2 = _mm_fmadd_sd( x2_2, _mm_load_sd( Y2 + 4 ), z2 );
// Advance Y pointers
Y1 += 5;
Y2 += 5;
// Compute and store z1 * z2
z1 = _mm_mul_sd( z1, z2 );
_mm_store_sd( output, z1 );
// Advance output pointer
output++;
}
}
可以使用 AVX 进一步微优化,但我不确定它会有多大帮助,因为内循环太短了。我认为这两个额外的 FMA 指令比计算 32 字节 AVX 向量的水平和的开销更小。
更新:这是另一个版本,它总体上需要更少的指令,但代价是几次随机播放。对于您的用例,可能不会更快。需要 SSE 4.1,但我认为所有具有 FMA3 的 CPU 也都具有 SSE 4.1。
void function_fma_v2( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 5 registers
const __m128d x1_0 = _mm_loadu_pd( X1 );
const __m128d x1_1 = _mm_loadu_pd( X1 + 2 );
__m128d xLast = _mm_load_sd( X1 + 4 );
const __m128d x2_0 = _mm_loadu_pd( X2 );
const __m128d x2_1 = _mm_loadu_pd( X2 + 2 );
xLast = _mm_loadh_pd( xLast, X2 + 4 );
// 5 iterations of the outer loop
const double* const y1End = Y1 + 25;
while( Y1 < y1End )
{
// Multiply first 2 values
__m128d z1 = _mm_mul_pd( x1_0, _mm_loadu_pd( Y1 ) );
__m128d z2 = _mm_mul_pd( x2_0, _mm_loadu_pd( Y2 ) );
// Multiply + accumulate next 2 values
z1 = _mm_fmadd_pd( x1_1, _mm_loadu_pd( Y1 + 2 ), z1 );
z2 = _mm_fmadd_pd( x2_1, _mm_loadu_pd( Y2 + 2 ), z2 );
// Horizontal sum both vectors while transposing
__m128d res = _mm_shuffle_pd( z1, z2, _MM_SHUFFLE2( 0, 1 ) ); // [ z1.y, z2.x ]
// On Intel CPUs that blend SSE4 instruction doesn't use shuffle port,
// throughput is 3x better than shuffle or unpack. On AMD they're equal.
res = _mm_add_pd( res, _mm_blend_pd( z1, z2, 0b10 ) ); // [ z1.x + z1.y, z2.x + z2.y ]
// Load the last 5-th Y values into a single vector
__m128d yLast = _mm_load_sd( Y1 + 4 );
yLast = _mm_loadh_pd( yLast, Y2 + 4 );
// Advance Y pointers
Y1 += 5;
Y2 += 5;
// Multiply + accumulate the last 5-th value
res = _mm_fmadd_pd( xLast, yLast, res );
// Compute and store z1 * z2
res = _mm_mul_sd( res, _mm_unpackhi_pd( res, res ) );
_mm_store_sd( output, res );
// Advance output pointer
output++;
}
}
从评论中的扩展讨论来看,您似乎主要对减少读取 X1
、X2
和写入 output
之间的延迟感兴趣。您正在计算的是两个矩阵向量乘积的逐元素乘积。两个 MV 产品可以准并行发生(使用 OOO 执行),但是两个 MV 产品都需要五个产品的总和,您可以按顺序(就像您现在所做的那样)或以树状方式进行减少:
Z = ((X[0]*Y[0] + X[1]*Y[1]) + X[2]*Y[2]) + ([X[3]*Y[3] + [X[4]*Y[4]);
这导致关键路径 mulsd
- fmaddsd
- fmaddsd
- addsd
,其后是 Z1*Z2
的乘法。这意味着,假设每个 FLOP 有 4 个周期的延迟,您将有 20 个周期的延迟加上读写内存的延迟(除非您能够将所有内容保存在寄存器中——这需要您显示周围的代码)。如果线性累积值,则关键路径为 mulsd
- fmaddsd
- fmaddsd
- fmaddsd
- fmaddsd
- mulsd
(即 24 个周期 + read/write)
现在,如果您能够更改 Y
的内存顺序,那么转置这些矩阵将是有益的,因为这样您就可以轻松地并行计算 output[0 ~ 3]
(假设您有 AVX) ,通过首先广播加载 X
的每个条目并进行打包累加。
void function_fma( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 10 registers.
const __m256d x1_0 = _mm256_broadcast_sd( X1 );
const __m256d x1_1 = _mm256_broadcast_sd( X1 + 1 );
const __m256d x1_2 = _mm256_broadcast_sd( X1 + 2 );
const __m256d x1_3 = _mm256_broadcast_sd( X1 + 3 );
const __m256d x1_4 = _mm256_broadcast_sd( X1 + 4 );
const __m256d x2_0 = _mm256_broadcast_sd( X2 );
const __m256d x2_1 = _mm256_broadcast_sd( X2 + 1 );
const __m256d x2_2 = _mm256_broadcast_sd( X2 + 2 );
const __m256d x2_3 = _mm256_broadcast_sd( X2 + 3 );
const __m256d x2_4 = _mm256_broadcast_sd( X2 + 4 );
// first four values:
{
// Multiply column 0
__m256d z1 = _mm256_mul_pd( x1_0, _mm256_loadu_pd( Y1 ) );
__m256d z2 = _mm256_mul_pd( x2_0, _mm256_loadu_pd( Y2 ) );
// Multiply + accumulate column 1 and column 2
z1 = _mm256_fmadd_pd( x1_1, _mm256_loadu_pd( Y1 + 5 ), z1 );
z2 = _mm256_fmadd_pd( x2_1, _mm256_loadu_pd( Y2 + 5 ), z2 );
z1 = _mm256_fmadd_pd( x1_2, _mm256_loadu_pd( Y1 + 10 ), z1 );
z2 = _mm256_fmadd_pd( x2_2, _mm256_loadu_pd( Y2 + 10 ), z2 );
// Multiply column 3
__m256d z1_ = _mm256_mul_pd( x1_3, _mm256_loadu_pd( Y1 + 15 ) );
__m256d z2_ = _mm256_mul_pd( x2_3, _mm256_loadu_pd( Y2 + 15 ) );
// Multiply + accumulate column 4
z1_ = _mm256_fmadd_pd( x1_4, _mm256_loadu_pd( Y1 + 20 ), z1_ );
z2_ = _mm256_fmadd_pd( x2_4, _mm256_loadu_pd( Y2 + 20 ), z2_ );
// Add both partial sum
z1 = _mm256_add_pd( z1, z1_ );
z2 = _mm256_add_pd( z2, z2_ );
// Multiply and store result
_mm256_store_pd(output, _mm256_mul_pd(z1, z2));
}
// last value:
{
// Multiply column 0
__m128d z1 = _mm_mul_sd( _mm256_castpd256_pd128(x1_0), _mm_load_sd( Y1 + 4) );
__m128d z2 = _mm_mul_sd( _mm256_castpd256_pd128(x2_0), _mm_load_sd( Y2 + 4) );
// Multiply + accumulate column 1 and column 2
z1 = _mm_fmadd_sd( _mm256_castpd256_pd128(x1_1), _mm_load_sd( Y1 + 9 ), z1 );
z2 = _mm_fmadd_sd( _mm256_castpd256_pd128(x2_1), _mm_load_sd( Y2 + 9 ), z2 );
z1 = _mm_fmadd_sd( _mm256_castpd256_pd128(x1_2), _mm_load_sd( Y1 + 14 ), z1 );
z2 = _mm_fmadd_sd( _mm256_castpd256_pd128(x2_2), _mm_load_sd( Y2 + 14 ), z2 );
// Multiply column 3
__m128d z1_ = _mm_mul_sd( _mm256_castpd256_pd128(x1_3), _mm_load_sd( Y1 + 19 ) );
__m128d z2_ = _mm_mul_sd( _mm256_castpd256_pd128(x2_3), _mm_load_sd( Y2 + 19 ) );
// Multiply + accumulate column 4
z1_ = _mm_fmadd_sd( _mm256_castpd256_pd128(x1_4), _mm_load_sd( Y1 + 24 ), z1_ );
z2_ = _mm_fmadd_sd( _mm256_castpd256_pd128(x2_4), _mm_load_sd( Y2 + 24 ), z2_ );
// Add both partial sum
z1 = _mm_add_sd( z1, z1_ );
z2 = _mm_add_sd( z2, z2_ );
// Multiply and store result
_mm_store_sd(output+4, _mm_mul_sd(z1, z2));
}
}
如果你没有 FMA,你可以用乘法和加法代替它们(这不会改变延迟很多,因为只有加法在关键路径上——吞吐量可能会降低大约 50%,当然)。此外,如果您没有 AVX,则可以通过将两个值乘以两倍来计算前四个值。
我有一个性能关键 C 代码,其中 > 90% 的时间都花在了一个基本操作上:
我使用的C代码是:
static void function(double *X1, double *Y1, double *X2, double *Y2, double *output) {
double Z1, Z2;
int i, j, k;
for (i = 0, j = 0; i < 25; j++) { // sweep Y
Z1 = 0;
Z2 = 0;
for (k = 0; k < 5; k++, i++) { // sweep X
Z1 += X1[k] * Y1[i];
Z2 += X2[k] * Y2[i];
}
output[j] = Z1*Z2;
}
}
长度固定(X为5;Y为25;输出为5)。我已经尝试了我所知道的一切来使它更快。当我使用带有 -O3 -march=native -Rpass-analysis=loop-vectorize -Rpass=loop-vectorize -Rpass-missed=loop-vectorize
的 clang 编译此代码时,我收到此消息:
remark: the cost-model indicates that vectorization is not beneficial [-Rpass-missed=loop-vectorize]
但我认为加快速度的方法是以某种方式使用 SIMD。如有任何建议,我们将不胜感激。
通过分别加载下半部分和上半部分寄存器,您至少可以同时处理 2 个元素。展开 i
两个可能会产生一个小边缘...
__restrict
关键字(如果适用)允许预加载五个常数系数 X1[0..4], X2[0..4]
。如果 X1
或 X2
部分别名输出,最好让编译器知道它(通过使用相同的数组)。这样,随着完整函数的展开,编译器不会不必要地重新加载任何元素。
typedef double __attribute__((vector_size(16))) f2;
void function2(double *X1, double *Y1, double *X2, double *Y2, double *__restrict output) {
double Z1, Z2;
int i = 0, j, k;
for (j = 0; j < 5; j++) { // sweep Y
f2 Z12 = {0.0, 0.0};
for (k = 0; k < 5; k++, i++) {
f2 Y12 = {Y1[i], Y2[i]};
f2 X12 = {X1[k], X2[k]};
Z12 += X12 * Y12;
}
output[j] = Z12[0]*Z12[1];
}
}
如果可能,请考虑交织Y1Y2,X1X3:
void function2(f2 const *X12, f2 const *Y12, double *output) {
int i = 0, j, k;
for (j = 0; j < 5; j++) { // sweep Y
f2 Z12 = X12[0] * Y12[0];
for (k = 1; k < 5; k++, i++) {
Z12 += X12[k] * Y12[k];
}
output[j] = Z12[0]*Z12[1]; // possibly [j * 2]?
}
}
通过内在函数可能会获得稍微更好的性能,但是,这个答案强调自动矢量化。
尝试以下版本,它需要 SSE2 和 FMA3。未经测试。
void function_fma( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 6 registers; the instruction set has 16 of them available, BTW.
const __m128d x1_0 = _mm_loadu_pd( X1 );
const __m128d x1_1 = _mm_loadu_pd( X1 + 2 );
const __m128d x1_2 = _mm_load_sd( X1 + 4 );
const __m128d x2_0 = _mm_loadu_pd( X2 );
const __m128d x2_1 = _mm_loadu_pd( X2 + 2 );
const __m128d x2_2 = _mm_load_sd( X2 + 4 );
// 5 iterations of the outer loop
const double* const y1End = Y1 + 25;
while( Y1 < y1End )
{
// Multiply first 2 values
__m128d z1 = _mm_mul_pd( x1_0, _mm_loadu_pd( Y1 ) );
__m128d z2 = _mm_mul_pd( x2_0, _mm_loadu_pd( Y2 ) );
// Multiply + accumulate next 2 values
z1 = _mm_fmadd_pd( x1_1, _mm_loadu_pd( Y1 + 2 ), z1 );
z2 = _mm_fmadd_pd( x2_1, _mm_loadu_pd( Y2 + 2 ), z2 );
// Horizontal sum both vectors
z1 = _mm_add_sd( z1, _mm_unpackhi_pd( z1, z1 ) );
z2 = _mm_add_sd( z2, _mm_unpackhi_pd( z2, z2 ) );
// Multiply + accumulate the last 5-th value
z1 = _mm_fmadd_sd( x1_2, _mm_load_sd( Y1 + 4 ), z1 );
z2 = _mm_fmadd_sd( x2_2, _mm_load_sd( Y2 + 4 ), z2 );
// Advance Y pointers
Y1 += 5;
Y2 += 5;
// Compute and store z1 * z2
z1 = _mm_mul_sd( z1, z2 );
_mm_store_sd( output, z1 );
// Advance output pointer
output++;
}
}
可以使用 AVX 进一步微优化,但我不确定它会有多大帮助,因为内循环太短了。我认为这两个额外的 FMA 指令比计算 32 字节 AVX 向量的水平和的开销更小。
更新:这是另一个版本,它总体上需要更少的指令,但代价是几次随机播放。对于您的用例,可能不会更快。需要 SSE 4.1,但我认为所有具有 FMA3 的 CPU 也都具有 SSE 4.1。
void function_fma_v2( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 5 registers
const __m128d x1_0 = _mm_loadu_pd( X1 );
const __m128d x1_1 = _mm_loadu_pd( X1 + 2 );
__m128d xLast = _mm_load_sd( X1 + 4 );
const __m128d x2_0 = _mm_loadu_pd( X2 );
const __m128d x2_1 = _mm_loadu_pd( X2 + 2 );
xLast = _mm_loadh_pd( xLast, X2 + 4 );
// 5 iterations of the outer loop
const double* const y1End = Y1 + 25;
while( Y1 < y1End )
{
// Multiply first 2 values
__m128d z1 = _mm_mul_pd( x1_0, _mm_loadu_pd( Y1 ) );
__m128d z2 = _mm_mul_pd( x2_0, _mm_loadu_pd( Y2 ) );
// Multiply + accumulate next 2 values
z1 = _mm_fmadd_pd( x1_1, _mm_loadu_pd( Y1 + 2 ), z1 );
z2 = _mm_fmadd_pd( x2_1, _mm_loadu_pd( Y2 + 2 ), z2 );
// Horizontal sum both vectors while transposing
__m128d res = _mm_shuffle_pd( z1, z2, _MM_SHUFFLE2( 0, 1 ) ); // [ z1.y, z2.x ]
// On Intel CPUs that blend SSE4 instruction doesn't use shuffle port,
// throughput is 3x better than shuffle or unpack. On AMD they're equal.
res = _mm_add_pd( res, _mm_blend_pd( z1, z2, 0b10 ) ); // [ z1.x + z1.y, z2.x + z2.y ]
// Load the last 5-th Y values into a single vector
__m128d yLast = _mm_load_sd( Y1 + 4 );
yLast = _mm_loadh_pd( yLast, Y2 + 4 );
// Advance Y pointers
Y1 += 5;
Y2 += 5;
// Multiply + accumulate the last 5-th value
res = _mm_fmadd_pd( xLast, yLast, res );
// Compute and store z1 * z2
res = _mm_mul_sd( res, _mm_unpackhi_pd( res, res ) );
_mm_store_sd( output, res );
// Advance output pointer
output++;
}
}
从评论中的扩展讨论来看,您似乎主要对减少读取 X1
、X2
和写入 output
之间的延迟感兴趣。您正在计算的是两个矩阵向量乘积的逐元素乘积。两个 MV 产品可以准并行发生(使用 OOO 执行),但是两个 MV 产品都需要五个产品的总和,您可以按顺序(就像您现在所做的那样)或以树状方式进行减少:
Z = ((X[0]*Y[0] + X[1]*Y[1]) + X[2]*Y[2]) + ([X[3]*Y[3] + [X[4]*Y[4]);
这导致关键路径 mulsd
- fmaddsd
- fmaddsd
- addsd
,其后是 Z1*Z2
的乘法。这意味着,假设每个 FLOP 有 4 个周期的延迟,您将有 20 个周期的延迟加上读写内存的延迟(除非您能够将所有内容保存在寄存器中——这需要您显示周围的代码)。如果线性累积值,则关键路径为 mulsd
- fmaddsd
- fmaddsd
- fmaddsd
- fmaddsd
- mulsd
(即 24 个周期 + read/write)
现在,如果您能够更改 Y
的内存顺序,那么转置这些矩阵将是有益的,因为这样您就可以轻松地并行计算 output[0 ~ 3]
(假设您有 AVX) ,通过首先广播加载 X
的每个条目并进行打包累加。
void function_fma( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 10 registers.
const __m256d x1_0 = _mm256_broadcast_sd( X1 );
const __m256d x1_1 = _mm256_broadcast_sd( X1 + 1 );
const __m256d x1_2 = _mm256_broadcast_sd( X1 + 2 );
const __m256d x1_3 = _mm256_broadcast_sd( X1 + 3 );
const __m256d x1_4 = _mm256_broadcast_sd( X1 + 4 );
const __m256d x2_0 = _mm256_broadcast_sd( X2 );
const __m256d x2_1 = _mm256_broadcast_sd( X2 + 1 );
const __m256d x2_2 = _mm256_broadcast_sd( X2 + 2 );
const __m256d x2_3 = _mm256_broadcast_sd( X2 + 3 );
const __m256d x2_4 = _mm256_broadcast_sd( X2 + 4 );
// first four values:
{
// Multiply column 0
__m256d z1 = _mm256_mul_pd( x1_0, _mm256_loadu_pd( Y1 ) );
__m256d z2 = _mm256_mul_pd( x2_0, _mm256_loadu_pd( Y2 ) );
// Multiply + accumulate column 1 and column 2
z1 = _mm256_fmadd_pd( x1_1, _mm256_loadu_pd( Y1 + 5 ), z1 );
z2 = _mm256_fmadd_pd( x2_1, _mm256_loadu_pd( Y2 + 5 ), z2 );
z1 = _mm256_fmadd_pd( x1_2, _mm256_loadu_pd( Y1 + 10 ), z1 );
z2 = _mm256_fmadd_pd( x2_2, _mm256_loadu_pd( Y2 + 10 ), z2 );
// Multiply column 3
__m256d z1_ = _mm256_mul_pd( x1_3, _mm256_loadu_pd( Y1 + 15 ) );
__m256d z2_ = _mm256_mul_pd( x2_3, _mm256_loadu_pd( Y2 + 15 ) );
// Multiply + accumulate column 4
z1_ = _mm256_fmadd_pd( x1_4, _mm256_loadu_pd( Y1 + 20 ), z1_ );
z2_ = _mm256_fmadd_pd( x2_4, _mm256_loadu_pd( Y2 + 20 ), z2_ );
// Add both partial sum
z1 = _mm256_add_pd( z1, z1_ );
z2 = _mm256_add_pd( z2, z2_ );
// Multiply and store result
_mm256_store_pd(output, _mm256_mul_pd(z1, z2));
}
// last value:
{
// Multiply column 0
__m128d z1 = _mm_mul_sd( _mm256_castpd256_pd128(x1_0), _mm_load_sd( Y1 + 4) );
__m128d z2 = _mm_mul_sd( _mm256_castpd256_pd128(x2_0), _mm_load_sd( Y2 + 4) );
// Multiply + accumulate column 1 and column 2
z1 = _mm_fmadd_sd( _mm256_castpd256_pd128(x1_1), _mm_load_sd( Y1 + 9 ), z1 );
z2 = _mm_fmadd_sd( _mm256_castpd256_pd128(x2_1), _mm_load_sd( Y2 + 9 ), z2 );
z1 = _mm_fmadd_sd( _mm256_castpd256_pd128(x1_2), _mm_load_sd( Y1 + 14 ), z1 );
z2 = _mm_fmadd_sd( _mm256_castpd256_pd128(x2_2), _mm_load_sd( Y2 + 14 ), z2 );
// Multiply column 3
__m128d z1_ = _mm_mul_sd( _mm256_castpd256_pd128(x1_3), _mm_load_sd( Y1 + 19 ) );
__m128d z2_ = _mm_mul_sd( _mm256_castpd256_pd128(x2_3), _mm_load_sd( Y2 + 19 ) );
// Multiply + accumulate column 4
z1_ = _mm_fmadd_sd( _mm256_castpd256_pd128(x1_4), _mm_load_sd( Y1 + 24 ), z1_ );
z2_ = _mm_fmadd_sd( _mm256_castpd256_pd128(x2_4), _mm_load_sd( Y2 + 24 ), z2_ );
// Add both partial sum
z1 = _mm_add_sd( z1, z1_ );
z2 = _mm_add_sd( z2, z2_ );
// Multiply and store result
_mm_store_sd(output+4, _mm_mul_sd(z1, z2));
}
}
如果你没有 FMA,你可以用乘法和加法代替它们(这不会改变延迟很多,因为只有加法在关键路径上——吞吐量可能会降低大约 50%,当然)。此外,如果您没有 AVX,则可以通过将两个值乘以两倍来计算前四个值。