Dash:如何在更新绘图的 table 和更新 table 上的 selection 的图表中 select 数据点?
Dash: How to select data points either in the table which updates the plot and on the graph which updates the selection on the table?
我是 dash 和 plotly 解决方案的新手。我想知道是否可以在同一个应用程序中加入这两种方法。选择点,更新复选框,然后取消选择更新行颜色的一些复选框。我有在这里找到的代码:https://community.plotly.com/t/dash-how-to-select-data-points-either-in-the-table-which-updates-the-plot-or-on-the-graph-which-updates-the-selection-on-the-table/46674,但我不知道该怎么做。谢谢。
from dash import dcc, html, dash_table
from dash.dependencies import Input, Output, State
import dash
import dash_bootstrap_components as dbc
import json
import pandas as pd
import plotly.graph_objects as go
df = pd.DataFrame.from_dict(
{'term': {0: 'GOCC:0043229', 1: 'GOCC:0098588', 2: 'GOCC:0005730', 3: 'GO:0005730', 4: 'GO:0005783', 5: 'GO:0031410', 6: 'KW-0732', 7: 'KW-0156', 8: 'KW-0010'},
'description': {0: 'Intracellular organelle', 1: 'Bounding membrane of organelle', 2: 'Nucleolus', 3: 'nucleolus', 4: 'endoplasmic reticulum', 5: 'cytoplasmic vesicle', 6: 'Signal', 7: 'Chromatin regulator', 8: 'Activator'},
'FG_count': {0: 370, 1: 92, 2: 126, 3: 500, 4: 63, 5: 23, 6: 9, 7: 410, 8: 31},
'logFDR': {0: 2.6, 1: 4, 2: 5, 3: 2, 4: 7, 5: 8, 6: 5, 7: 1, 8: 6},
'effectSize': {0: 0.053, 1: -0.049, 2: 0.046, 3: 0.025, 4: -0.040, 5: -0.027, 6: -0.024, 7: 0.025, 8: 0.047},
'category': {0: 'TM', 1: 'TM', 2: 'TM', 3: 'GOCC', 4: 'GOCC', 5: 'GOCC', 6: 'UPK', 7: 'UPK', 8: 'UPK'}})
style_data_conditional_basic = [{"if": {"state": "selected"}, "backgroundColor": "gold", "border": "inherit !important", "text_align": "inherit !important", }] + [
{"if": {"state": "active"}, "backgroundColor": "inherit !important", "border": "inherit !important", "text_align": "inherit !important", }]
app = dash.Dash(__name__, prevent_initial_callbacks=True,
external_stylesheets=[dbc.themes.BOOTSTRAP])
marker_size_min_ = 4
sizeref = 0.05
data_table_ex = dash_table.DataTable(
id='main_datatable',
columns=[{"name": colName, "id": colName} for colName in df.columns],
data=df.to_dict('records'),
sort_action="native",
row_selectable="multi",
selected_columns=[],
selected_rows=[],
style_as_list_view=True,
style_data={'if': {'row_index': 'odd'}, 'backgroundColor': "#F5F5F5", },
style_data_conditional=[],
style_cell={'minWidth': "10px", "width": "50px", "maxWidth": "80px", "fontSize": "12px", "font-family": "sans-serif", "text_align": "center", "border": "1px", },)
def create_scatter_plot_graph(df):
fig = go.Figure()
for category_name, group in df.groupby("category"):
fig.add_trace(go.Scatter(name=category_name, x=group["logFDR"].tolist(), y=group["effectSize"].tolist(), ids=group["term"].tolist(), legendgroup=category_name, mode="markers", marker_symbol="circle", marker_size=group["FG_count"], marker_sizemin=marker_size_min_,
marker_sizemode="area", marker_sizeref=sizeref, customdata=[list(ele) for ele in zip(group["term"], group["description"], group["FG_count"])], hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>Size: %{customdata[2]}<extra></extra>", ))
fig.update_layout(xaxis={'title': 'log(FDR)'},
yaxis={'title': 'effect size'})
scatter_plot_graph = dcc.Graph(id='scatter_plot', figure=fig)
return scatter_plot_graph
scatter_plot_graph = create_scatter_plot_graph(df)
app.layout = html.Div(id='general_div', className="container-fluid",
children=[
dbc.Row([
dbc.Col(
html.Div(id="scatter_container", children=[scatter_plot_graph]), xs={"size": 12}, sm={"size": 12}, md={"size": 10}, lg={"size": 8}, ),
], justify="center", ),
html.Br(),
dbc.Row([
dbc.Col(
html.Div(data_table_ex), xs={"size": 12}, sm={"size": 12}, md={"size": 10}, lg={"size": 10},),
], justify="center",),
html.Br(),
])
@app.callback([
Output(component_id="main_datatable",
component_property="style_data_conditional"),
Output(component_id="scatter_container", component_property="children")
],
[
Input(component_id="main_datatable",
component_property="selected_rows"),
Input(component_id="main_datatable",
component_property="derived_virtual_data"),
Input(component_id="main_datatable",
component_property='derived_virtual_selected_rows')
])
def on_selectInDataTable_highlight_dataTableRows_and_pointsInScatterPlot(selected_rows, derived_virtual_data, derived_virtual_selected_rows):
dff = df if len(derived_virtual_data) == 0 else pd.DataFrame(
derived_virtual_data)
dff["marker_line_width"] = 1
dff["marker_line_color"] = "white"
dff.loc[derived_virtual_selected_rows, "marker_line_width"] = 4
dff.loc[derived_virtual_selected_rows, "marker_line_color"] = "black"
fig = go.Figure()
for category_name, group in dff.groupby("category"):
fig.add_trace(go.Scatter(name=category_name, x=group["logFDR"].tolist(), y=group["effectSize"].tolist(), ids=group["term"].tolist(), legendgroup=category_name, mode="markers", marker_symbol="circle", marker_size=group["FG_count"], marker_sizemin=marker_size_min_, marker_sizemode="area", marker_sizeref=sizeref,
marker_line_width=group["marker_line_width"], marker_line_color=group["marker_line_color"], customdata=[list(ele) for ele in zip(group["term"], group["description"], group["FG_count"])], hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>Size: %{customdata[2]}<extra></extra>", ))
fig.update_layout(xaxis={'title': 'log(FDR)'},
yaxis={'title': 'effect size'})
scatter_plot_fig = dcc.Graph(id='scatter_plot', figure=fig)
if selected_rows is not None:
selected_term_list = dff.loc[selected_rows, "term"].tolist()
style_data_conditional_extension = [{'if': {'filter_query': '{term}=' + "{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
return style_data_conditional_extension + style_data_conditional_basic, scatter_plot_fig
else:
return style_data_conditional_basic, scatter_plot_fig
@app.callback([
Output(component_id="main_datatable",
component_property="style_data_conditional"),
Output(component_id="main_datatable", component_property="selected_rows")
],
[
Input(component_id="scatter_plot", component_property="selectedData")
])
def on_selectInScatter_highlight_and_select_dataTableRows(selectedData):
selected_term_list, selected_rows = [], selectedData
if selectedData is not None:
for point in selectedData["points"]:
selected_term_list.append(point["customdata"][0])
style_data_conditional_extension = [{'if': {'filter_query': '{term}='+"{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
selected_rows = df[df["term"].isin(selected_term_list)].index.tolist()
return style_data_conditional_extension + style_data_conditional_basic, selected_rows
return style_data_conditional_basic, selected_rows
if __name__ == '__main__':
app.run_server(debug=True)
您应该将两个回调合并为一个,使用 dash.callback_context
进行流量控制,如文档 here 中所述。
可能的解决方案:
import dash
@app.callback(
[
Output(component_id="main_datatable", component_property="style_data_conditional"),
Output(component_id="scatter_container", component_property="children"),
Output(component_id="main_datatable", component_property="selected_rows")
],
[
Input(component_id="main_datatable", component_property="selected_rows"),
Input(component_id="main_datatable", component_property="derived_virtual_data"),
Input(component_id="main_datatable", component_property='derived_virtual_selected_rows'),
Input(component_id="scatter_plot", component_property="selectedData")
],
[
State(component_id="scatter_container", component_property="children"),
State(component_id="main_datatable", component_property="selected_rows")
]
)
def update_by_trigger(selected_rows, derived_virtual_data, derived_virtual_selected_rows, selectedData, current_scatter, current_rows):
ctx = dash.callback_context
# Check what triggered the update
if not ctx.triggered:
return dash.no_update
else:
trigger = ctx.triggered[0]["prop_id"].split(".")[0]
if trigger == "main_datatable":
style_data_conditional_basic, scatter_plot_fig = on_selectInDataTable_highlight_dataTableRows_and_pointsInScatterPlot(selected_rows, derived_virtual_data, derived_virtual_selected_rows)
return style_data_conditional_basic, scatter_plot_fig, current_rows
elif trigger == "scatter_plot":
style_data_conditional_basic, selected_rows = on_selectInScatter_highlight_and_select_dataTableRows(selectedData)
return style_data_conditional_basic, current_scatter, selected_rows
else:
return dash.no_update
# Old callbacks as function to call in the combined callback
def on_selectInDataTable_highlight_dataTableRows_and_pointsInScatterPlot(selected_rows, derived_virtual_data, derived_virtual_selected_rows):
dff = df if len(derived_virtual_data) == 0 else pd.DataFrame(
derived_virtual_data)
dff["marker_line_width"] = 1
dff["marker_line_color"] = "white"
dff.loc[derived_virtual_selected_rows, "marker_line_width"] = 4
dff.loc[derived_virtual_selected_rows, "marker_line_color"] = "black"
fig = go.Figure()
for category_name, group in dff.groupby("category"):
fig.add_trace(go.Scatter(name=category_name, x=group["logFDR"].tolist(), y=group["effectSize"].tolist(), ids=group["term"].tolist(), legendgroup=category_name, mode="markers", marker_symbol="circle", marker_size=group["FG_count"], marker_sizemin=marker_size_min_, marker_sizemode="area", marker_sizeref=sizeref,
marker_line_width=group["marker_line_width"], marker_line_color=group["marker_line_color"], customdata=[list(ele) for ele in zip(group["term"], group["description"], group["FG_count"])], hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>Size: %{customdata[2]}<extra></extra>", ))
fig.update_layout(xaxis={'title': 'log(FDR)'},
yaxis={'title': 'effect size'})
scatter_plot_fig = dcc.Graph(id='scatter_plot', figure=fig)
if selected_rows is not None:
selected_term_list = dff.loc[selected_rows, "term"].tolist()
style_data_conditional_extension = [{'if': {'filter_query': '{term}=' + "{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
return style_data_conditional_extension + style_data_conditional_basic, scatter_plot_fig
else:
return style_data_conditional_basic, scatter_plot_fig
def on_selectInScatter_highlight_and_select_dataTableRows(selectedData):
selected_term_list, selected_rows = [], selectedData
if selectedData is not None:
for point in selectedData["points"]:
selected_term_list.append(point["customdata"][0])
style_data_conditional_extension = [{'if': {'filter_query': '{term}='+"{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
selected_rows = df[df["term"].isin(selected_term_list)].index.tolist()
return style_data_conditional_extension + style_data_conditional_basic, selected_rows
return style_data_conditional_basic, selected_rows
我是 dash 和 plotly 解决方案的新手。我想知道是否可以在同一个应用程序中加入这两种方法。选择点,更新复选框,然后取消选择更新行颜色的一些复选框。我有在这里找到的代码:https://community.plotly.com/t/dash-how-to-select-data-points-either-in-the-table-which-updates-the-plot-or-on-the-graph-which-updates-the-selection-on-the-table/46674,但我不知道该怎么做。谢谢。
from dash import dcc, html, dash_table
from dash.dependencies import Input, Output, State
import dash
import dash_bootstrap_components as dbc
import json
import pandas as pd
import plotly.graph_objects as go
df = pd.DataFrame.from_dict(
{'term': {0: 'GOCC:0043229', 1: 'GOCC:0098588', 2: 'GOCC:0005730', 3: 'GO:0005730', 4: 'GO:0005783', 5: 'GO:0031410', 6: 'KW-0732', 7: 'KW-0156', 8: 'KW-0010'},
'description': {0: 'Intracellular organelle', 1: 'Bounding membrane of organelle', 2: 'Nucleolus', 3: 'nucleolus', 4: 'endoplasmic reticulum', 5: 'cytoplasmic vesicle', 6: 'Signal', 7: 'Chromatin regulator', 8: 'Activator'},
'FG_count': {0: 370, 1: 92, 2: 126, 3: 500, 4: 63, 5: 23, 6: 9, 7: 410, 8: 31},
'logFDR': {0: 2.6, 1: 4, 2: 5, 3: 2, 4: 7, 5: 8, 6: 5, 7: 1, 8: 6},
'effectSize': {0: 0.053, 1: -0.049, 2: 0.046, 3: 0.025, 4: -0.040, 5: -0.027, 6: -0.024, 7: 0.025, 8: 0.047},
'category': {0: 'TM', 1: 'TM', 2: 'TM', 3: 'GOCC', 4: 'GOCC', 5: 'GOCC', 6: 'UPK', 7: 'UPK', 8: 'UPK'}})
style_data_conditional_basic = [{"if": {"state": "selected"}, "backgroundColor": "gold", "border": "inherit !important", "text_align": "inherit !important", }] + [
{"if": {"state": "active"}, "backgroundColor": "inherit !important", "border": "inherit !important", "text_align": "inherit !important", }]
app = dash.Dash(__name__, prevent_initial_callbacks=True,
external_stylesheets=[dbc.themes.BOOTSTRAP])
marker_size_min_ = 4
sizeref = 0.05
data_table_ex = dash_table.DataTable(
id='main_datatable',
columns=[{"name": colName, "id": colName} for colName in df.columns],
data=df.to_dict('records'),
sort_action="native",
row_selectable="multi",
selected_columns=[],
selected_rows=[],
style_as_list_view=True,
style_data={'if': {'row_index': 'odd'}, 'backgroundColor': "#F5F5F5", },
style_data_conditional=[],
style_cell={'minWidth': "10px", "width": "50px", "maxWidth": "80px", "fontSize": "12px", "font-family": "sans-serif", "text_align": "center", "border": "1px", },)
def create_scatter_plot_graph(df):
fig = go.Figure()
for category_name, group in df.groupby("category"):
fig.add_trace(go.Scatter(name=category_name, x=group["logFDR"].tolist(), y=group["effectSize"].tolist(), ids=group["term"].tolist(), legendgroup=category_name, mode="markers", marker_symbol="circle", marker_size=group["FG_count"], marker_sizemin=marker_size_min_,
marker_sizemode="area", marker_sizeref=sizeref, customdata=[list(ele) for ele in zip(group["term"], group["description"], group["FG_count"])], hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>Size: %{customdata[2]}<extra></extra>", ))
fig.update_layout(xaxis={'title': 'log(FDR)'},
yaxis={'title': 'effect size'})
scatter_plot_graph = dcc.Graph(id='scatter_plot', figure=fig)
return scatter_plot_graph
scatter_plot_graph = create_scatter_plot_graph(df)
app.layout = html.Div(id='general_div', className="container-fluid",
children=[
dbc.Row([
dbc.Col(
html.Div(id="scatter_container", children=[scatter_plot_graph]), xs={"size": 12}, sm={"size": 12}, md={"size": 10}, lg={"size": 8}, ),
], justify="center", ),
html.Br(),
dbc.Row([
dbc.Col(
html.Div(data_table_ex), xs={"size": 12}, sm={"size": 12}, md={"size": 10}, lg={"size": 10},),
], justify="center",),
html.Br(),
])
@app.callback([
Output(component_id="main_datatable",
component_property="style_data_conditional"),
Output(component_id="scatter_container", component_property="children")
],
[
Input(component_id="main_datatable",
component_property="selected_rows"),
Input(component_id="main_datatable",
component_property="derived_virtual_data"),
Input(component_id="main_datatable",
component_property='derived_virtual_selected_rows')
])
def on_selectInDataTable_highlight_dataTableRows_and_pointsInScatterPlot(selected_rows, derived_virtual_data, derived_virtual_selected_rows):
dff = df if len(derived_virtual_data) == 0 else pd.DataFrame(
derived_virtual_data)
dff["marker_line_width"] = 1
dff["marker_line_color"] = "white"
dff.loc[derived_virtual_selected_rows, "marker_line_width"] = 4
dff.loc[derived_virtual_selected_rows, "marker_line_color"] = "black"
fig = go.Figure()
for category_name, group in dff.groupby("category"):
fig.add_trace(go.Scatter(name=category_name, x=group["logFDR"].tolist(), y=group["effectSize"].tolist(), ids=group["term"].tolist(), legendgroup=category_name, mode="markers", marker_symbol="circle", marker_size=group["FG_count"], marker_sizemin=marker_size_min_, marker_sizemode="area", marker_sizeref=sizeref,
marker_line_width=group["marker_line_width"], marker_line_color=group["marker_line_color"], customdata=[list(ele) for ele in zip(group["term"], group["description"], group["FG_count"])], hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>Size: %{customdata[2]}<extra></extra>", ))
fig.update_layout(xaxis={'title': 'log(FDR)'},
yaxis={'title': 'effect size'})
scatter_plot_fig = dcc.Graph(id='scatter_plot', figure=fig)
if selected_rows is not None:
selected_term_list = dff.loc[selected_rows, "term"].tolist()
style_data_conditional_extension = [{'if': {'filter_query': '{term}=' + "{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
return style_data_conditional_extension + style_data_conditional_basic, scatter_plot_fig
else:
return style_data_conditional_basic, scatter_plot_fig
@app.callback([
Output(component_id="main_datatable",
component_property="style_data_conditional"),
Output(component_id="main_datatable", component_property="selected_rows")
],
[
Input(component_id="scatter_plot", component_property="selectedData")
])
def on_selectInScatter_highlight_and_select_dataTableRows(selectedData):
selected_term_list, selected_rows = [], selectedData
if selectedData is not None:
for point in selectedData["points"]:
selected_term_list.append(point["customdata"][0])
style_data_conditional_extension = [{'if': {'filter_query': '{term}='+"{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
selected_rows = df[df["term"].isin(selected_term_list)].index.tolist()
return style_data_conditional_extension + style_data_conditional_basic, selected_rows
return style_data_conditional_basic, selected_rows
if __name__ == '__main__':
app.run_server(debug=True)
您应该将两个回调合并为一个,使用 dash.callback_context
进行流量控制,如文档 here 中所述。
可能的解决方案:
import dash
@app.callback(
[
Output(component_id="main_datatable", component_property="style_data_conditional"),
Output(component_id="scatter_container", component_property="children"),
Output(component_id="main_datatable", component_property="selected_rows")
],
[
Input(component_id="main_datatable", component_property="selected_rows"),
Input(component_id="main_datatable", component_property="derived_virtual_data"),
Input(component_id="main_datatable", component_property='derived_virtual_selected_rows'),
Input(component_id="scatter_plot", component_property="selectedData")
],
[
State(component_id="scatter_container", component_property="children"),
State(component_id="main_datatable", component_property="selected_rows")
]
)
def update_by_trigger(selected_rows, derived_virtual_data, derived_virtual_selected_rows, selectedData, current_scatter, current_rows):
ctx = dash.callback_context
# Check what triggered the update
if not ctx.triggered:
return dash.no_update
else:
trigger = ctx.triggered[0]["prop_id"].split(".")[0]
if trigger == "main_datatable":
style_data_conditional_basic, scatter_plot_fig = on_selectInDataTable_highlight_dataTableRows_and_pointsInScatterPlot(selected_rows, derived_virtual_data, derived_virtual_selected_rows)
return style_data_conditional_basic, scatter_plot_fig, current_rows
elif trigger == "scatter_plot":
style_data_conditional_basic, selected_rows = on_selectInScatter_highlight_and_select_dataTableRows(selectedData)
return style_data_conditional_basic, current_scatter, selected_rows
else:
return dash.no_update
# Old callbacks as function to call in the combined callback
def on_selectInDataTable_highlight_dataTableRows_and_pointsInScatterPlot(selected_rows, derived_virtual_data, derived_virtual_selected_rows):
dff = df if len(derived_virtual_data) == 0 else pd.DataFrame(
derived_virtual_data)
dff["marker_line_width"] = 1
dff["marker_line_color"] = "white"
dff.loc[derived_virtual_selected_rows, "marker_line_width"] = 4
dff.loc[derived_virtual_selected_rows, "marker_line_color"] = "black"
fig = go.Figure()
for category_name, group in dff.groupby("category"):
fig.add_trace(go.Scatter(name=category_name, x=group["logFDR"].tolist(), y=group["effectSize"].tolist(), ids=group["term"].tolist(), legendgroup=category_name, mode="markers", marker_symbol="circle", marker_size=group["FG_count"], marker_sizemin=marker_size_min_, marker_sizemode="area", marker_sizeref=sizeref,
marker_line_width=group["marker_line_width"], marker_line_color=group["marker_line_color"], customdata=[list(ele) for ele in zip(group["term"], group["description"], group["FG_count"])], hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>Size: %{customdata[2]}<extra></extra>", ))
fig.update_layout(xaxis={'title': 'log(FDR)'},
yaxis={'title': 'effect size'})
scatter_plot_fig = dcc.Graph(id='scatter_plot', figure=fig)
if selected_rows is not None:
selected_term_list = dff.loc[selected_rows, "term"].tolist()
style_data_conditional_extension = [{'if': {'filter_query': '{term}=' + "{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
return style_data_conditional_extension + style_data_conditional_basic, scatter_plot_fig
else:
return style_data_conditional_basic, scatter_plot_fig
def on_selectInScatter_highlight_and_select_dataTableRows(selectedData):
selected_term_list, selected_rows = [], selectedData
if selectedData is not None:
for point in selectedData["points"]:
selected_term_list.append(point["customdata"][0])
style_data_conditional_extension = [{'if': {'filter_query': '{term}='+"{}".format(
term)}, 'backgroundColor': 'gold'} for term in selected_term_list]
selected_rows = df[df["term"].isin(selected_term_list)].index.tolist()
return style_data_conditional_extension + style_data_conditional_basic, selected_rows
return style_data_conditional_basic, selected_rows