在 tfrecord 功能中存储多个值
Storing multiple values in a tfrecord feature
image_id
class_1_rle
class_2_rle
class_3_rle
0002cc93b.jpg
29102 12 29346 24...
0007a71bf.jpg
18661 28 18863 82...
000a4bcdd.jpg
131973 1 132228 4...
229501 11 229741 33...
我正在尝试使用上面的 table 创建 tfrecords
。我需要以 rle
每个 class 的形式组合 rle
(运行 长度编码)功能。例如。最后 tfrecord
中的特征看起来像
img_id: b'0002cc93b.jpg'
rle: [b'1 0' b'29102 12 29346 24...' b'1 0']
img_id: b'000a4bcdd.jpg'
rle: [b'131973 1 132228 4...' b'1 0' b'229501 11 229741 33...']
rle
特征应包含相应图像的所有 3 个掩码的 rles
作为字符串,空 rle
应编码为 '1 0'
我尝试使用列表。但它给出了以下错误
TypeError: ['29102 12 29346 24 29602 24 29858 24 30114 24 30370 24 30626 24 30882 24 31139 23 31395 23 31651 23 has type list, but expected one of: bytes
您只需 3 个简单的步骤即可实现此目的,但如果没有更多详细信息,很难说出您实际打算做什么:
创建和解析数据:
import tensorflow as tf
import pandas as pd
import tabulate
import numpy as np
d = {'image_id': ['0002cc93b.jpg', '0007a71bf.jpg', '000a4bcdd.jpg'],
'class_1_rle': ['', '18661 28 18863 82...', '131973 1 132228 4...'],
'class_2_rle': ['29102 12 29346 24...', '', ''],
'class_3_rle': ['', '', '229501 11 229741 33...']}
df = pd.DataFrame(data=d)
default_value = '1 0'
df = df.replace(r'^\s*$', default_value, regex=True)
print(df.to_markdown())
image_ids = np.asarray(df.pop('image_id'))
rle_classes = df.to_numpy()
image_ids_shape = image_ids.shape
rle_classes_shape = rle_classes.shape
image_ids = np.vectorize(lambda x: x.encode('utf-8'))(image_ids).ravel()
rle_classes = np.vectorize(lambda x: x.encode('utf-8'))(rle_classes).ravel()
| | image_id | class_1_rle | class_2_rle | class_3_rle |
|---:|:--------------|:---------------------|:---------------------|:-----------------------|
| 0 | 0002cc93b.jpg | 1 0 | 29102 12 29346 24... | 1 0 |
| 1 | 0007a71bf.jpg | 18661 28 18863 82... | 1 0 | 1 0 |
| 2 | 000a4bcdd.jpg | 131973 1 132228 4... | 1 0 | 229501 11 229741 33... |
创建 tfrecord:
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value = value))
def create_example(image_ids, rle_classes):
feature = {'img_id': bytes_feature(image_ids),
'rle': bytes_feature(rle_classes)}
example = tf.train.Example(features = tf.train.Features(feature = feature))
return example
test_writer = tf.io.TFRecordWriter('data.tfrecords')
example = create_example(image_ids, rle_classes)
test_writer.write(example.SerializeToString())
test_writer.close()
读取 tfrecord:
def parse_tfrecord(example):
feature = {'img_id': tf.io.FixedLenFeature([image_ids_shape[0]], tf.string),
'rle': tf.io.FixedLenFeature([rle_classes_shape[0], rle_classes_shape[1]], tf.string)}
parsed_example = tf.io.parse_single_example(example, feature)
return parsed_example
serialised_example = tf.data.TFRecordDataset('data.tfrecords')
parsed_example_dataset = serialised_example.map(parse_tfrecord)
parsed_example_dataset = parsed_example_dataset.flat_map(tf.data.Dataset.from_tensor_slices)
for features in parsed_example_dataset:
print(features['img_id'], features['rle'])
tf.Tensor(b'0002cc93b.jpg', shape=(), dtype=string) tf.Tensor([b'1 0' b'29102 12 29346 24...' b'1 0'], shape=(3,), dtype=string)
tf.Tensor(b'0007a71bf.jpg', shape=(), dtype=string) tf.Tensor([b'18661 28 18863 82...' b'1 0' b'1 0'], shape=(3,), dtype=string)
tf.Tensor(b'000a4bcdd.jpg', shape=(), dtype=string) tf.Tensor([b'131973 1 132228 4...' b'1 0' b'229501 11 229741 33...'], shape=(3,), dtype=string)
我找到了适合我的整体 solution。
在特征中存储多个值的具体solution。
使用pandas将df中的空rles替换为'1 0'
从df中抓取对应图片的rles的函数。
def rle_class_1(image_id):
temp_df = df['class_1_rle'][df['image_id'] == image_id]
for rle in temp_df:
rle_tensor = tf.constant(rle)
return rle_tensor.numpy()
class_2 和 class_3 的类似功能。
创建 tfrecord
paths_dict = dict(zip(file_ids, file_paths))
def _bytestring_feature(list_of_bytestrings):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=list_of_bytestrings))
def _int_feature(list_of_ints):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list_of_ints))
def image_bits_from_id(image_id):
image = Image.open(paths_dict[image_id])
image = tf.constant(image)
image_bits = tf.image.encode_jpeg(image, optimize_size=True, chroma_downsampling=False)
image_bits = image_bits.numpy()
return image_bits
def create_tfrec_example(image_id):
image = image_bits_from_id(image_id)
rle_1 = rle_class_1(image_id)
rle_2 = rle_class_2(image_id)
rle_3 = rle_class_3(image_id)
feature = {
'image': _bytestring_feature([image]),
'img_id': _bytestring_feature([image_id.encode()]),
'rle': _bytestring_feature([rle_1, rle_2, rle_3])
}
tfrec_example = tf.train.Example(features=tf.train.Features(feature=feature))
return tfrec_example
解析并查看记录
def parse_tfrecord_fn(example):
features = {
'image': tf.io.FixedLenFeature([], tf.string),
'img_id': tf.io.FixedLenFeature([], tf.string)
}
features['rle'] = tf.io.FixedLenFeature([3], tf.string)
example = tf.io.parse_single_example(example, features)
example["image"] = tf.io.decode_jpeg(example["image"], channels=3)
return example
raw_dataset = tf.data.TFRecordDataset(TFREC[0]) # TFREC is a shard
parsed_dataset = raw_dataset.map(parse_tfrecord_fn)
for features in parsed_dataset.take(5):
for key in features.keys():
if key != "image":
print(f"{key}: {features[key]}")
print(f"Image shape: {features['image'].shape}")
plt.figure(figsize=(7, 7))
plt.imshow(features["image"].numpy())
plt.show()
输出
img_id: b'0002cc93b.jpg'
rle: [b'29102 12 29346 24 29602 24 29858 24... '
b'1 0' b'1 0']
Image plot
image_id | class_1_rle | class_2_rle | class_3_rle |
---|---|---|---|
0002cc93b.jpg |
29102 12 29346 24... |
||
0007a71bf.jpg |
18661 28 18863 82... |
||
000a4bcdd.jpg |
131973 1 132228 4... |
229501 11 229741 33... |
我正在尝试使用上面的 table 创建 tfrecords
。我需要以 rle
每个 class 的形式组合 rle
(运行 长度编码)功能。例如。最后 tfrecord
中的特征看起来像
img_id: b'0002cc93b.jpg'
rle: [b'1 0' b'29102 12 29346 24...' b'1 0']
img_id: b'000a4bcdd.jpg'
rle: [b'131973 1 132228 4...' b'1 0' b'229501 11 229741 33...']
rle
特征应包含相应图像的所有 3 个掩码的 rles
作为字符串,空 rle
应编码为 '1 0'
我尝试使用列表。但它给出了以下错误
TypeError: ['29102 12 29346 24 29602 24 29858 24 30114 24 30370 24 30626 24 30882 24 31139 23 31395 23 31651 23 has type list, but expected one of: bytes
您只需 3 个简单的步骤即可实现此目的,但如果没有更多详细信息,很难说出您实际打算做什么:
创建和解析数据:
import tensorflow as tf
import pandas as pd
import tabulate
import numpy as np
d = {'image_id': ['0002cc93b.jpg', '0007a71bf.jpg', '000a4bcdd.jpg'],
'class_1_rle': ['', '18661 28 18863 82...', '131973 1 132228 4...'],
'class_2_rle': ['29102 12 29346 24...', '', ''],
'class_3_rle': ['', '', '229501 11 229741 33...']}
df = pd.DataFrame(data=d)
default_value = '1 0'
df = df.replace(r'^\s*$', default_value, regex=True)
print(df.to_markdown())
image_ids = np.asarray(df.pop('image_id'))
rle_classes = df.to_numpy()
image_ids_shape = image_ids.shape
rle_classes_shape = rle_classes.shape
image_ids = np.vectorize(lambda x: x.encode('utf-8'))(image_ids).ravel()
rle_classes = np.vectorize(lambda x: x.encode('utf-8'))(rle_classes).ravel()
| | image_id | class_1_rle | class_2_rle | class_3_rle |
|---:|:--------------|:---------------------|:---------------------|:-----------------------|
| 0 | 0002cc93b.jpg | 1 0 | 29102 12 29346 24... | 1 0 |
| 1 | 0007a71bf.jpg | 18661 28 18863 82... | 1 0 | 1 0 |
| 2 | 000a4bcdd.jpg | 131973 1 132228 4... | 1 0 | 229501 11 229741 33... |
创建 tfrecord:
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value = value))
def create_example(image_ids, rle_classes):
feature = {'img_id': bytes_feature(image_ids),
'rle': bytes_feature(rle_classes)}
example = tf.train.Example(features = tf.train.Features(feature = feature))
return example
test_writer = tf.io.TFRecordWriter('data.tfrecords')
example = create_example(image_ids, rle_classes)
test_writer.write(example.SerializeToString())
test_writer.close()
读取 tfrecord:
def parse_tfrecord(example):
feature = {'img_id': tf.io.FixedLenFeature([image_ids_shape[0]], tf.string),
'rle': tf.io.FixedLenFeature([rle_classes_shape[0], rle_classes_shape[1]], tf.string)}
parsed_example = tf.io.parse_single_example(example, feature)
return parsed_example
serialised_example = tf.data.TFRecordDataset('data.tfrecords')
parsed_example_dataset = serialised_example.map(parse_tfrecord)
parsed_example_dataset = parsed_example_dataset.flat_map(tf.data.Dataset.from_tensor_slices)
for features in parsed_example_dataset:
print(features['img_id'], features['rle'])
tf.Tensor(b'0002cc93b.jpg', shape=(), dtype=string) tf.Tensor([b'1 0' b'29102 12 29346 24...' b'1 0'], shape=(3,), dtype=string)
tf.Tensor(b'0007a71bf.jpg', shape=(), dtype=string) tf.Tensor([b'18661 28 18863 82...' b'1 0' b'1 0'], shape=(3,), dtype=string)
tf.Tensor(b'000a4bcdd.jpg', shape=(), dtype=string) tf.Tensor([b'131973 1 132228 4...' b'1 0' b'229501 11 229741 33...'], shape=(3,), dtype=string)
我找到了适合我的整体 solution。
在特征中存储多个值的具体solution。
使用pandas将df中的空rles替换为'1 0'
从df中抓取对应图片的rles的函数。
def rle_class_1(image_id):
temp_df = df['class_1_rle'][df['image_id'] == image_id]
for rle in temp_df:
rle_tensor = tf.constant(rle)
return rle_tensor.numpy()
class_2 和 class_3 的类似功能。
创建 tfrecord
paths_dict = dict(zip(file_ids, file_paths))
def _bytestring_feature(list_of_bytestrings):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=list_of_bytestrings))
def _int_feature(list_of_ints):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list_of_ints))
def image_bits_from_id(image_id):
image = Image.open(paths_dict[image_id])
image = tf.constant(image)
image_bits = tf.image.encode_jpeg(image, optimize_size=True, chroma_downsampling=False)
image_bits = image_bits.numpy()
return image_bits
def create_tfrec_example(image_id):
image = image_bits_from_id(image_id)
rle_1 = rle_class_1(image_id)
rle_2 = rle_class_2(image_id)
rle_3 = rle_class_3(image_id)
feature = {
'image': _bytestring_feature([image]),
'img_id': _bytestring_feature([image_id.encode()]),
'rle': _bytestring_feature([rle_1, rle_2, rle_3])
}
tfrec_example = tf.train.Example(features=tf.train.Features(feature=feature))
return tfrec_example
解析并查看记录
def parse_tfrecord_fn(example):
features = {
'image': tf.io.FixedLenFeature([], tf.string),
'img_id': tf.io.FixedLenFeature([], tf.string)
}
features['rle'] = tf.io.FixedLenFeature([3], tf.string)
example = tf.io.parse_single_example(example, features)
example["image"] = tf.io.decode_jpeg(example["image"], channels=3)
return example
raw_dataset = tf.data.TFRecordDataset(TFREC[0]) # TFREC is a shard
parsed_dataset = raw_dataset.map(parse_tfrecord_fn)
for features in parsed_dataset.take(5):
for key in features.keys():
if key != "image":
print(f"{key}: {features[key]}")
print(f"Image shape: {features['image'].shape}")
plt.figure(figsize=(7, 7))
plt.imshow(features["image"].numpy())
plt.show()
输出
img_id: b'0002cc93b.jpg'
rle: [b'29102 12 29346 24 29602 24 29858 24... '
b'1 0' b'1 0']
Image plot