HuggingFace AutoTokenizer | ValueError: Couldn't instantiate the backend tokenizer

HuggingFace AutoTokenizer | ValueError: Couldn't instantiate the backend tokenizer

目标:修改此 Notebook 以使用 albert-base-v2 模型

第 1.3 节出现错误

内核:conda_pytorch_p36。我做了 Restart & 运行 All,并刷新了工作目录中的文件视图。


列出了 3 种可能导致此错误的方法。我不确定我的情况属于哪个。

第 1.3 节:

# define the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
        configs.output_dir, do_lower_case=configs.do_lower_case)

回溯:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-25-1f864e3046eb> in <module>
    140 # define the tokenizer
    141 tokenizer = AutoTokenizer.from_pretrained(
--> 142         configs.output_dir, do_lower_case=configs.do_lower_case)
    143 
    144 # Evaluate the original FP32 BERT model

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/auto/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
    548             tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
    549             if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
--> 550                 return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
    551             else:
    552                 if tokenizer_class_py is not None:

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)
   1752             use_auth_token=use_auth_token,
   1753             cache_dir=cache_dir,
-> 1754             **kwargs,
   1755         )
   1756 

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
   1880         # Instantiate tokenizer.
   1881         try:
-> 1882             tokenizer = cls(*init_inputs, **init_kwargs)
   1883         except OSError:
   1884             raise OSError(

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/albert/tokenization_albert_fast.py in __init__(self, vocab_file, tokenizer_file, do_lower_case, remove_space, keep_accents, bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, **kwargs)
    159             cls_token=cls_token,
    160             mask_token=mask_token,
--> 161             **kwargs,
    162         )
    163 

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_fast.py in __init__(self, *args, **kwargs)
    116         else:
    117             raise ValueError(
--> 118                 "Couldn't instantiate the backend tokenizer from one of: \n"
    119                 "(1) a `tokenizers` library serialization file, \n"
    120                 "(2) a slow tokenizer instance to convert or \n"

ValueError: Couldn't instantiate the backend tokenizer from one of: 
(1) a `tokenizers` library serialization file, 
(2) a slow tokenizer instance to convert or 
(3) an equivalent slow tokenizer class to instantiate and convert. 
You need to have sentencepiece installed to convert a slow tokenizer to a fast one.

如果我还有什么要补充的,请告诉我 post。

首先,我必须pip install sentencepiece

但是,在同一行代码中,我收到 sentencepiece 错误。

围绕两个参数包装 str() 产生相同的回溯。

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-12-1f864e3046eb> in <module>
    140 # define the tokenizer
    141 tokenizer = AutoTokenizer.from_pretrained(
--> 142         configs.output_dir, do_lower_case=configs.do_lower_case)
    143 
    144 # Evaluate the original FP32 BERT model

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/auto/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
    548             tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
    549             if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
--> 550                 return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
    551             else:
    552                 if tokenizer_class_py is not None:

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)
   1752             use_auth_token=use_auth_token,
   1753             cache_dir=cache_dir,
-> 1754             **kwargs,
   1755         )
   1756 

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
   1776                 copy.deepcopy(init_configuration),
   1777                 *init_inputs,
-> 1778                 **(copy.deepcopy(kwargs)),
   1779             )
   1780         else:

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
   1880         # Instantiate tokenizer.
   1881         try:
-> 1882             tokenizer = cls(*init_inputs, **init_kwargs)
   1883         except OSError:
   1884             raise OSError(

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/albert/tokenization_albert.py in __init__(self, vocab_file, do_lower_case, remove_space, keep_accents, bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, sp_model_kwargs, **kwargs)
    179 
    180         self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
--> 181         self.sp_model.Load(vocab_file)
    182 
    183     @property

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in Load(self, model_file, model_proto)
    365       if model_proto:
    366         return self.LoadFromSerializedProto(model_proto)
--> 367       return self.LoadFromFile(model_file)
    368 
    369 

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in LoadFromFile(self, arg)
    169 
    170     def LoadFromFile(self, arg):
--> 171         return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
    172 
    173     def DecodeIdsWithCheck(self, ids):

TypeError: not a string
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-12-1f864e3046eb> in <module>
    140 # define the tokenizer
    141 tokenizer = AutoTokenizer.from_pretrained(
--> 142         configs.output_dir, do_lower_case=configs.do_lower_case)
    143 
    144 # Evaluate the original FP32 BERT model

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/auto/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
    548             tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
    549             if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
--> 550                 return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
    551             else:
    552                 if tokenizer_class_py is not None:

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)
   1752             use_auth_token=use_auth_token,
   1753             cache_dir=cache_dir,
-> 1754             **kwargs,
   1755         )
   1756 

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
   1776                 copy.deepcopy(init_configuration),
   1777                 *init_inputs,
-> 1778                 **(copy.deepcopy(kwargs)),
   1779             )
   1780         else:

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
   1880         # Instantiate tokenizer.
   1881         try:
-> 1882             tokenizer = cls(*init_inputs, **init_kwargs)
   1883         except OSError:
   1884             raise OSError(

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/albert/tokenization_albert.py in __init__(self, vocab_file, do_lower_case, remove_space, keep_accents, bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, sp_model_kwargs, **kwargs)
    179 
    180         self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
--> 181         self.sp_model.Load(vocab_file)
    182 
    183     @property

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in Load(self, model_file, model_proto)
    365       if model_proto:
    366         return self.LoadFromSerializedProto(model_proto)
--> 367       return self.LoadFromFile(model_file)
    368 
    369 

~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in LoadFromFile(self, arg)
    169 
    170     def LoadFromFile(self, arg):
--> 171         return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
    172 
    173     def DecodeIdsWithCheck(self, ids):

TypeError: not a string

然后我不得不换掉模型名称的参数:

tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')

第二部分详细介绍了这个