TypeError: not a string | parameters in AutoTokenizer.from_pretrained()
TypeError: not a string | parameters in AutoTokenizer.from_pretrained()
目标:修改此 Notebook 以使用 albert-base-v2 模型。
内核:conda_pytorch_p36
。我做了 Restart & 运行 All,并刷新了工作目录中的文件视图。
为了评估和导出这个量化模型,我需要设置一个 Tokenizer。
第 1.3 节出现错误。
AutoTokenizer.from_pretrained()
中的两个参数抛出相同的错误。
1.3节代码:
# define the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
configs.output_dir, do_lower_case=configs.do_lower_case)
参数:
# The output directory for the fine-tuned model, $OUT_DIR.
configs.output_dir = "./MRPC/"
# Prepare GLUE task
...
configs.do_lower_case = True
值和 DType:
-- configs.output_dir --
./MRPC/
<class 'str'>
-- configs.do_lower_case --
True
<class 'bool'>
回溯:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-13-18c5137aacf4> in <module>
140 # define the tokenizer
141 tokenizer = AutoTokenizer.from_pretrained(
--> 142 configs.output_dir, do_lower_case=configs.do_lower_case)
143
144 # Evaluate the original FP32 BERT model
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/auto/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
548 tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
549 if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
--> 550 return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
551 else:
552 if tokenizer_class_py is not None:
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)
1752 use_auth_token=use_auth_token,
1753 cache_dir=cache_dir,
-> 1754 **kwargs,
1755 )
1756
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
1776 copy.deepcopy(init_configuration),
1777 *init_inputs,
-> 1778 **(copy.deepcopy(kwargs)),
1779 )
1780 else:
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
1880 # Instantiate tokenizer.
1881 try:
-> 1882 tokenizer = cls(*init_inputs, **init_kwargs)
1883 except OSError:
1884 raise OSError(
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/albert/tokenization_albert.py in __init__(self, vocab_file, do_lower_case, remove_space, keep_accents, bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, sp_model_kwargs, **kwargs)
179
180 self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
--> 181 self.sp_model.Load(vocab_file)
182
183 @property
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in Load(self, model_file, model_proto)
365 if model_proto:
366 return self.LoadFromSerializedProto(model_proto)
--> 367 return self.LoadFromFile(model_file)
368
369
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in LoadFromFile(self, arg)
169
170 def LoadFromFile(self, arg):
--> 171 return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
172
173 def DecodeIdsWithCheck(self, ids):
TypeError: not a string
如果我还有什么要补充的,请告诉我 post。
只需传递型号名称即可。
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
可以找到 model_types
的列表 here。
目标:修改此 Notebook 以使用 albert-base-v2 模型。
内核:conda_pytorch_p36
。我做了 Restart & 运行 All,并刷新了工作目录中的文件视图。
为了评估和导出这个量化模型,我需要设置一个 Tokenizer。
第 1.3 节出现错误。
AutoTokenizer.from_pretrained()
中的两个参数抛出相同的错误。
1.3节代码:
# define the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
configs.output_dir, do_lower_case=configs.do_lower_case)
参数:
# The output directory for the fine-tuned model, $OUT_DIR.
configs.output_dir = "./MRPC/"
# Prepare GLUE task
...
configs.do_lower_case = True
值和 DType:
-- configs.output_dir --
./MRPC/
<class 'str'>
-- configs.do_lower_case --
True
<class 'bool'>
回溯:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-13-18c5137aacf4> in <module>
140 # define the tokenizer
141 tokenizer = AutoTokenizer.from_pretrained(
--> 142 configs.output_dir, do_lower_case=configs.do_lower_case)
143
144 # Evaluate the original FP32 BERT model
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/auto/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
548 tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
549 if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
--> 550 return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
551 else:
552 if tokenizer_class_py is not None:
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)
1752 use_auth_token=use_auth_token,
1753 cache_dir=cache_dir,
-> 1754 **kwargs,
1755 )
1756
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
1776 copy.deepcopy(init_configuration),
1777 *init_inputs,
-> 1778 **(copy.deepcopy(kwargs)),
1779 )
1780 else:
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)
1880 # Instantiate tokenizer.
1881 try:
-> 1882 tokenizer = cls(*init_inputs, **init_kwargs)
1883 except OSError:
1884 raise OSError(
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/transformers/models/albert/tokenization_albert.py in __init__(self, vocab_file, do_lower_case, remove_space, keep_accents, bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, sp_model_kwargs, **kwargs)
179
180 self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
--> 181 self.sp_model.Load(vocab_file)
182
183 @property
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in Load(self, model_file, model_proto)
365 if model_proto:
366 return self.LoadFromSerializedProto(model_proto)
--> 367 return self.LoadFromFile(model_file)
368
369
~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/sentencepiece/__init__.py in LoadFromFile(self, arg)
169
170 def LoadFromFile(self, arg):
--> 171 return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
172
173 def DecodeIdsWithCheck(self, ids):
TypeError: not a string
如果我还有什么要补充的,请告诉我 post。
只需传递型号名称即可。
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
可以找到 model_types
的列表 here。