重塑和均值计算
Reshape and mean calculation
我有一整年沿着海拔梯度收集的气候数据。形状是这样的:
clim <- read.table(text="alti year month week day meanTemp maxTemp minTemp
350 2011 aug. 31 213 10 14 6
350 2011 aug. 31 214 12 18 6
350 2011 aug. 31 215 10 11 9
550 2011 aug. 31 213 8 10 6
550 2011 aug. 31 214 10 12 8
550 2011 aug. 31 215 8 9 7
350 2011 sep. 31 244 9 10 8
350 2011 sep. 31 245 11 12 10
350 2011 sep. 31 246 10 11 9
550 2011 sep. 31 244 7.5 9 6
550 2011 sep. 31 245 8 10 6
550 2011 sep. 31 246 8.5 9 8", header=TRUE)
我正在尝试重塑这些数据,以便每个高度只有一行,并计算每个月和全年的平均数据。要是能变成那样就好了:
alti mean_year(meanTemp) mean_year(maxTemp) mean_aug.(meanTemp) mean_aug.(maxTemp) mean_sep.(meanTemp) [...]
350 10.333 12.667 10.667 14.3 10 ...
550 8.333 9.833 8.667 10.333 7.766 ...
有执行此重塑和计算的想法吗?
您可以使用 data.table 和 dcast:
library(data.table)
setDT(clim)
merge(
clim[, list("mean_temp_mean_year" = mean(meanTemp), "max_temp_mean_year" = mean(maxTemp)), by = alti]
,
dcast(clim[, list("mean_temp_mean" = mean(meanTemp), "max_temp_mean" = mean(maxTemp)), by = c("alti","month")], alti ~ month, value.var = c("mean_temp_mean","max_temp_mean"))
,
by = "alti")
我换了一些变量的名字,你的顺序不是很完美,但是可以reordered/renamed之后
要获取月份或年份的平均值,您可以使用 aggregate
后跟 reshape
。
两个聚合可以分开计算,然后merge
放在一起:
mon <- aggregate(cbind(meanTemp, maxTemp) ~ month + alti, data=clim, FUN=mean)
mon.wide <- reshape(mon, direction='wide', timevar='month', idvar='alti')
yr <- aggregate(cbind(meanTemp, maxTemp) ~ year + alti, data=clim, FUN=mean)
yr.wide <- reshape(yr, direction='wide', timevar='year', idvar='alti')
每个 .wide
集合都有您想要的数据。唯一的公共列是 alti
所以我们采用 merge
默认值:
merge(mon.wide, yr.wide)
## alti meanTemp.aug. maxTemp.aug. meanTemp.sep. maxTemp.sep. meanTemp.2011 maxTemp.2011
## 1 350 10.666667 14.33333 10 11.000000 10.333333 12.666667
## 2 550 8.666667 10.33333 8 9.333333 8.333333 9.833333
这是 data.table
解决方案的另一种变体,但这需要当前的 devel version, v1.9.5
:
require(data.table) # v1.9.5+
setDT(clim)
form = paste("alti", c("year", "month"), sep=" ~ ")
val = c("meanTemp", "maxTemp")
ans = lapply(form, function(x) dcast(clim, x, mean, value.var = val))
Reduce(function(x, y) x[y, on="alti"], ans)
# alti meanTemp_mean_2011 maxTemp_mean_2011 meanTemp_mean_aug. meanTemp_mean_sep. maxTemp_mean_aug. maxTemp_mean_sep.
# 1: 350 10.333333 12.666667 10.666667 10 14.33333 11.000000
# 2: 550 8.333333 9.833333 8.666667 8 10.33333 9.333333
我有一整年沿着海拔梯度收集的气候数据。形状是这样的:
clim <- read.table(text="alti year month week day meanTemp maxTemp minTemp
350 2011 aug. 31 213 10 14 6
350 2011 aug. 31 214 12 18 6
350 2011 aug. 31 215 10 11 9
550 2011 aug. 31 213 8 10 6
550 2011 aug. 31 214 10 12 8
550 2011 aug. 31 215 8 9 7
350 2011 sep. 31 244 9 10 8
350 2011 sep. 31 245 11 12 10
350 2011 sep. 31 246 10 11 9
550 2011 sep. 31 244 7.5 9 6
550 2011 sep. 31 245 8 10 6
550 2011 sep. 31 246 8.5 9 8", header=TRUE)
我正在尝试重塑这些数据,以便每个高度只有一行,并计算每个月和全年的平均数据。要是能变成那样就好了:
alti mean_year(meanTemp) mean_year(maxTemp) mean_aug.(meanTemp) mean_aug.(maxTemp) mean_sep.(meanTemp) [...]
350 10.333 12.667 10.667 14.3 10 ...
550 8.333 9.833 8.667 10.333 7.766 ...
有执行此重塑和计算的想法吗?
您可以使用 data.table 和 dcast:
library(data.table)
setDT(clim)
merge(
clim[, list("mean_temp_mean_year" = mean(meanTemp), "max_temp_mean_year" = mean(maxTemp)), by = alti]
,
dcast(clim[, list("mean_temp_mean" = mean(meanTemp), "max_temp_mean" = mean(maxTemp)), by = c("alti","month")], alti ~ month, value.var = c("mean_temp_mean","max_temp_mean"))
,
by = "alti")
我换了一些变量的名字,你的顺序不是很完美,但是可以reordered/renamed之后
要获取月份或年份的平均值,您可以使用 aggregate
后跟 reshape
。
两个聚合可以分开计算,然后merge
放在一起:
mon <- aggregate(cbind(meanTemp, maxTemp) ~ month + alti, data=clim, FUN=mean)
mon.wide <- reshape(mon, direction='wide', timevar='month', idvar='alti')
yr <- aggregate(cbind(meanTemp, maxTemp) ~ year + alti, data=clim, FUN=mean)
yr.wide <- reshape(yr, direction='wide', timevar='year', idvar='alti')
每个 .wide
集合都有您想要的数据。唯一的公共列是 alti
所以我们采用 merge
默认值:
merge(mon.wide, yr.wide)
## alti meanTemp.aug. maxTemp.aug. meanTemp.sep. maxTemp.sep. meanTemp.2011 maxTemp.2011
## 1 350 10.666667 14.33333 10 11.000000 10.333333 12.666667
## 2 550 8.666667 10.33333 8 9.333333 8.333333 9.833333
这是 data.table
解决方案的另一种变体,但这需要当前的 devel version, v1.9.5
:
require(data.table) # v1.9.5+
setDT(clim)
form = paste("alti", c("year", "month"), sep=" ~ ")
val = c("meanTemp", "maxTemp")
ans = lapply(form, function(x) dcast(clim, x, mean, value.var = val))
Reduce(function(x, y) x[y, on="alti"], ans)
# alti meanTemp_mean_2011 maxTemp_mean_2011 meanTemp_mean_aug. meanTemp_mean_sep. maxTemp_mean_aug. maxTemp_mean_sep.
# 1: 350 10.333333 12.666667 10.666667 10 14.33333 11.000000
# 2: 550 8.333333 9.833333 8.666667 8 10.33333 9.333333