为什么惩罚不会改变 Keras 模型的预测?

Why does a penalty not change the predictions of a Keras model?

我最近在尝试实现自定义损失函数时遇到了这个问题。以下两个损失函数产生完全相同的结果,即使在第二个损失函数中添加了一个大的随机值 returns 并确保了 jupyter notebook 中的可再现性。知道这是为什么吗?


def customLoss1():

  def binary_crossentropy1(y_true, y_pred): 

    bin_cross = tf.keras.losses.BinaryCrossentropy()
    bce = K.mean(bin_cross(y_true, y_pred))

    return bce

  return binary_crossentropy1


def customLoss2():

  def binary_crossentropy2(y_true, y_pred): 

    bin_cross = tf.keras.losses.BinaryCrossentropy()
    bce = K.mean(bin_cross(y_true, y_pred)) + tf.random.normal([], mean=0.0, stddev=10.0)

    return bce

  return binary_crossentropy2

你的错误一定是在别的地方,因为你发布的损失函数确实会产生不同的结果:

import tensorflow as tf
tf.random.set_seed(11)

def binary_crossentropy1(y_true, y_pred): 

  bin_cross = tf.keras.losses.BinaryCrossentropy(from_logits=True)
  bce = tf.keras.backend.mean(bin_cross(y_true, y_pred))
  return bce

def binary_crossentropy2(y_true, y_pred): 

  bin_cross = tf.keras.losses.BinaryCrossentropy(from_logits=True)
  bce = tf.keras.backend.mean(bin_cross(y_true, y_pred)) + tf.random.normal([], mean=0.0, stddev=10.0)
  return bce

y_true = tf.constant([0, 1, 0, 0])
y_pred = tf.constant([-18.6, 0.51, 2.94, -12.8])
print(binary_crossentropy1(y_true, y_pred))
print(binary_crossentropy2(y_true, y_pred))
tf.Tensor(0.865458, shape=(), dtype=float32)
tf.Tensor(-14.364014, shape=(), dtype=float32)