有没有一种有效的方法可以找到距离 python 中的 3 维点最近的线段?
Is there an efficient way to find the nearest line segment to a point in 3 dimensions in python?
3D我有一点
p = [0,1,0]
以及由起点和终点坐标定义的线段列表。
line_starts = [[1,1,1], [2,2,2], [3,3,3]]
line_ends = [[5,1,3], [3,2,1], [3, 1, 1]]
我尝试调整这里详述的前两个算法 post:
Find the shortest distance between a point and line segments (not line)
但是对于超过 1k 的点和线段,算法要么非常慢,要么不适用于 3 维。有没有一种有效的方法来计算点到线段的最小距离,以及return线段上该点的坐标?
例如
例如,我能够从上面链接的 post 改编这段代码,但速度非常慢。
import math
import numpy as np
def dot(v,w):
x,y,z = v
X,Y,Z = w
return x*X + y*Y + z*Z
def length(v):
x,y,z = v
return math.sqrt(x*x + y*y + z*z)
def vector(b,e):
x,y,z = b
X,Y,Z = e
return (X-x, Y-y, Z-z)
def unit(v):
x,y,z = v
mag = length(v)
return (x/mag, y/mag, z/mag)
def distance(p0,p1):
return length(vector(p0,p1))
def scale(v,sc):
x,y,z = v
return (x * sc, y * sc, z * sc)
def add(v,w):
x,y,z = v
X,Y,Z = w
return (x+X, y+Y, z+Z)
'''Given a line with coordinates 'start' and 'end' and the
coordinates of a point 'pnt' the proc returns the shortest
distance from pnt to the line and the coordinates of the
nearest point on the line.
1 Convert the line segment to a vector ('line_vec').
2 Create a vector connecting start to pnt ('pnt_vec').
3 Find the length of the line vector ('line_len').
4 Convert line_vec to a unit vector ('line_unitvec').
5 Scale pnt_vec by line_len ('pnt_vec_scaled').
6 Get the dot product of line_unitvec and pnt_vec_scaled ('t').
7 Ensure t is in the range 0 to 1.
8 Use t to get the nearest location on the line to the end
of vector pnt_vec_scaled ('nearest').
9 Calculate the distance from nearest to pnt_vec_scaled.
10 Translate nearest back to the start/end line.
Malcolm Kesson 16 Dec 2012'''
def pnt2line(array):
pnt = array[0]
start = array[1]
end = array[2]
line_vec = vector(start, end)
pnt_vec = vector(start, pnt)
line_len = length(line_vec)
line_unitvec = unit(line_vec)
pnt_vec_scaled = scale(pnt_vec, 1.0/line_len)
t = dot(line_unitvec, pnt_vec_scaled)
if t < 0.0:
t = 0.0
elif t > 1.0:
t = 1.0
nearest = scale(line_vec, t)
dist = distance(nearest, pnt_vec)
nearest = add(nearest, start)
return (round(dist, 3), [round(i, 3) for i in nearest])
def get_nearest_line(input_d):
'''
input_d is an array of arrays
Each subarray is [point, line_start, line_end]
The point must be the same for all sub_arrays
'''
op = np.array(list(map(pnt2line, input_d)))
ind = np.argmin(op[:, 0])
return ind, op[ind, 0], op[ind, 1]
if __name__ == '__main__':
p = [0,1,0]
line_starts = [[1,1,1], [2,2,2], [3,3,3]]
line_ends = [[5,1,3], [3,2,1], [3, 1, 1]]
input_d = [[p, line_starts[i], line_ends[i]] for i in range(len(line_starts))]
print(get_nearest_line(input_d))
输出:
(0, 1.414, [1.0, 1.0, 1.0])
在这里,
(0 - 第一条线段最近,
1.414 - 到线段的距离,
[1.0, 1.0, 1.0] - 线段上离给定点最近的点)
问题是上面的代码非常慢。
此外,我有大约 10K 个点和一组固定的 10K 线段。对于每个点,
我必须找到最近的线段,以及线段上最近的点。
现在处理 10K 点需要 30 分钟。
有没有有效的方法来实现这个?
你可以试试这个:
import numpy as np
def dot(v, w):
"""
row-wise dot product of 2-dimensional arrays
"""
return np.einsum('ij,ij->i', v, w)
def closest(line_starts, line_ends, p):
"""
find line segment closest to the point p
"""
# array of vectors from the start to the end of each line segment
se = line_ends - line_starts
# array of vectors from the start of each line segment to the point p
sp = p - line_starts
# array of vectors from the end of each line segment to p
ep = p - line_ends
# orthogonal projection of sp onto se
proj = (dot(sp, se) / dot(se, se)).reshape(-1, 1) * se
# orthogonal complement of the projection
n = sp - proj
# squares of distances from the start of each line segment to p
starts_d = dot(sp, sp)
# squares of distances from the end of each line segments to p
ends_d = dot(ep, ep)
# squares of distances between p and each line
lines_d = dot(n, n)
# If the point determined by the projection is inside
# the line segment, it is the point of the line segment
# closest to p; otherwhise the closest point is one of
# the enpoints. Determine which of these cases holds
# and compute the square of the distance to each line segment.
coeffs = dot(proj, se)
dist = np.select([coeffs < 0, coeffs < dot(se, se), True],
[starts_d, lines_d, ends_d])
# find the index of the closest line segment, its distance to p,
# and the point in this line segment closest to p
idx = np.argmin(dist)
min_dist = dist[idx]
if min_dist == starts_d[idx]:
min_point = line_starts[idx]
elif min_dist == ends_d[idx]:
min_point = line_ends[idx]
else:
min_point = line_starts[idx] + proj[idx]
return idx, min_dist**0.5, min_point
示例:
line_starts = np.array([[1,1,1], [2,2,2], [3,3,3]])
line_ends = np.array([[5,1,3], [3,2,1], [3, 1, 1]])
p = np.array([0,1,0])
idx, dist, point = closest(line_starts, line_ends, p)
print(f"index = {idx}\ndistance = {dist}\nclosest point = {point}")
它给出:
index = 0
distance = 1.4142135623730951
closest point = [1 1 1]
由于你的情况线段是固定的,只有点在变化,所以可以针对这种情况进行优化。
3D我有一点
p = [0,1,0]
以及由起点和终点坐标定义的线段列表。
line_starts = [[1,1,1], [2,2,2], [3,3,3]]
line_ends = [[5,1,3], [3,2,1], [3, 1, 1]]
我尝试调整这里详述的前两个算法 post: Find the shortest distance between a point and line segments (not line)
但是对于超过 1k 的点和线段,算法要么非常慢,要么不适用于 3 维。有没有一种有效的方法来计算点到线段的最小距离,以及return线段上该点的坐标?
例如 例如,我能够从上面链接的 post 改编这段代码,但速度非常慢。
import math
import numpy as np
def dot(v,w):
x,y,z = v
X,Y,Z = w
return x*X + y*Y + z*Z
def length(v):
x,y,z = v
return math.sqrt(x*x + y*y + z*z)
def vector(b,e):
x,y,z = b
X,Y,Z = e
return (X-x, Y-y, Z-z)
def unit(v):
x,y,z = v
mag = length(v)
return (x/mag, y/mag, z/mag)
def distance(p0,p1):
return length(vector(p0,p1))
def scale(v,sc):
x,y,z = v
return (x * sc, y * sc, z * sc)
def add(v,w):
x,y,z = v
X,Y,Z = w
return (x+X, y+Y, z+Z)
'''Given a line with coordinates 'start' and 'end' and the
coordinates of a point 'pnt' the proc returns the shortest
distance from pnt to the line and the coordinates of the
nearest point on the line.
1 Convert the line segment to a vector ('line_vec').
2 Create a vector connecting start to pnt ('pnt_vec').
3 Find the length of the line vector ('line_len').
4 Convert line_vec to a unit vector ('line_unitvec').
5 Scale pnt_vec by line_len ('pnt_vec_scaled').
6 Get the dot product of line_unitvec and pnt_vec_scaled ('t').
7 Ensure t is in the range 0 to 1.
8 Use t to get the nearest location on the line to the end
of vector pnt_vec_scaled ('nearest').
9 Calculate the distance from nearest to pnt_vec_scaled.
10 Translate nearest back to the start/end line.
Malcolm Kesson 16 Dec 2012'''
def pnt2line(array):
pnt = array[0]
start = array[1]
end = array[2]
line_vec = vector(start, end)
pnt_vec = vector(start, pnt)
line_len = length(line_vec)
line_unitvec = unit(line_vec)
pnt_vec_scaled = scale(pnt_vec, 1.0/line_len)
t = dot(line_unitvec, pnt_vec_scaled)
if t < 0.0:
t = 0.0
elif t > 1.0:
t = 1.0
nearest = scale(line_vec, t)
dist = distance(nearest, pnt_vec)
nearest = add(nearest, start)
return (round(dist, 3), [round(i, 3) for i in nearest])
def get_nearest_line(input_d):
'''
input_d is an array of arrays
Each subarray is [point, line_start, line_end]
The point must be the same for all sub_arrays
'''
op = np.array(list(map(pnt2line, input_d)))
ind = np.argmin(op[:, 0])
return ind, op[ind, 0], op[ind, 1]
if __name__ == '__main__':
p = [0,1,0]
line_starts = [[1,1,1], [2,2,2], [3,3,3]]
line_ends = [[5,1,3], [3,2,1], [3, 1, 1]]
input_d = [[p, line_starts[i], line_ends[i]] for i in range(len(line_starts))]
print(get_nearest_line(input_d))
输出:
(0, 1.414, [1.0, 1.0, 1.0])
在这里,
(0 - 第一条线段最近,
1.414 - 到线段的距离,
[1.0, 1.0, 1.0] - 线段上离给定点最近的点)
问题是上面的代码非常慢。 此外,我有大约 10K 个点和一组固定的 10K 线段。对于每个点, 我必须找到最近的线段,以及线段上最近的点。 现在处理 10K 点需要 30 分钟。
有没有有效的方法来实现这个?
你可以试试这个:
import numpy as np
def dot(v, w):
"""
row-wise dot product of 2-dimensional arrays
"""
return np.einsum('ij,ij->i', v, w)
def closest(line_starts, line_ends, p):
"""
find line segment closest to the point p
"""
# array of vectors from the start to the end of each line segment
se = line_ends - line_starts
# array of vectors from the start of each line segment to the point p
sp = p - line_starts
# array of vectors from the end of each line segment to p
ep = p - line_ends
# orthogonal projection of sp onto se
proj = (dot(sp, se) / dot(se, se)).reshape(-1, 1) * se
# orthogonal complement of the projection
n = sp - proj
# squares of distances from the start of each line segment to p
starts_d = dot(sp, sp)
# squares of distances from the end of each line segments to p
ends_d = dot(ep, ep)
# squares of distances between p and each line
lines_d = dot(n, n)
# If the point determined by the projection is inside
# the line segment, it is the point of the line segment
# closest to p; otherwhise the closest point is one of
# the enpoints. Determine which of these cases holds
# and compute the square of the distance to each line segment.
coeffs = dot(proj, se)
dist = np.select([coeffs < 0, coeffs < dot(se, se), True],
[starts_d, lines_d, ends_d])
# find the index of the closest line segment, its distance to p,
# and the point in this line segment closest to p
idx = np.argmin(dist)
min_dist = dist[idx]
if min_dist == starts_d[idx]:
min_point = line_starts[idx]
elif min_dist == ends_d[idx]:
min_point = line_ends[idx]
else:
min_point = line_starts[idx] + proj[idx]
return idx, min_dist**0.5, min_point
示例:
line_starts = np.array([[1,1,1], [2,2,2], [3,3,3]])
line_ends = np.array([[5,1,3], [3,2,1], [3, 1, 1]])
p = np.array([0,1,0])
idx, dist, point = closest(line_starts, line_ends, p)
print(f"index = {idx}\ndistance = {dist}\nclosest point = {point}")
它给出:
index = 0
distance = 1.4142135623730951
closest point = [1 1 1]
由于你的情况线段是固定的,只有点在变化,所以可以针对这种情况进行优化。