使用 dplyr 按年计算频率(条件计数)

count frequency by year with dplyr (conditional count)

我想按年份统计工具 A 的使用情况并保留零。

ID <- c(1,1,2,2,2,3,4,5,5,5)
Tool <- c("A","B","A","B","A","A","B","A","A","A")
Year <- c(2000,2001,2001,2001,2002,2002,2001,2000,2001,2002)
df <- data.frame(ID,Tool,Year)
library(tidyverse)
df %>% group_by(ID) %>% summarise(toolA = sum(Tool == "A")) %>% count(toolA)
# A tibble: 4 x 2
  toolA     n
  <int> <int>
1     0     1
2     1     2
3     2     1
4     3     1

我想添加年份列,这样我就可以得到如下所示的 table

tool A Count 2000 2001 2002
0 1 0 0 0
1 2 1 0 1
2 1 0 1 1
3 1 1 1 1

年下的数字表示一年内使用的次数。(不是一个人) 你会怎么做?

也许这太复杂了,存在 better/easier 解决方案。

library(dplyr)
library(tidyr)

dataA <- df %>% 
  group_by(ID) %>% 
  summarise(toolA = sum(Tool == "A")) %>% 
  count(toolA)

df %>%
  group_by(ID, Year) %>%
  summarise(toolA = sum(Tool == "A"), .groups = 'drop') %>%
  pivot_wider(names_from = Year, values_from = toolA, values_fill = 0) %>%
  select(-ID) %>%
  mutate(toolA = rowSums(.)) %>%
  right_join(dataA, by = 'toolA') %>%
  select(toolA, n, everything()) %>%
  arrange(toolA) %>%
  group_by(toolA, n) %>%
  summarise(across(.fns = sum), .groups = 'drop')

#  toolA     n `2000` `2001` `2002`
#  <dbl> <int>  <int>  <int>  <int>
#1     0     1      0      0      0
#2     1     2      1      0      1
#3     2     1      0      1      1
#4     3     1      1      1      1

我可能会用 tidyverse 尝试这种方法。当按 ID 分组时,使用 Year 创建一个列表列。在像您所做的那样包含计数 n 之后,使用 unnest_longer 恢复年份。我为计数为零的情况添加了一个额外的列,称为“None”。最后的 pivot_wider 会再次将数据转换为宽格式。

library(tidyverse)

df %>% 
  group_by(ID) %>% 
  summarise(toolA = sum(Tool == "A"),
            Years = list(Year[Tool == "A"])) %>%
  add_count(toolA) %>%
  unnest_longer(Years) %>%
  replace_na(list(Years = "None")) %>%
  mutate(value = 1) %>%
  pivot_wider(id_cols = c(toolA, n), names_from = Years, names_prefix = "Year_", values_from = value, values_fill = 0)%>%
  arrange(toolA)

输出

  toolA     n Year_2000 Year_2001 Year_2002 Year_None
  <int> <int>     <dbl>     <dbl>     <dbl>     <dbl>
1     0     1         0         0         0         1
2     1     2         1         0         1         0
3     2     1         0         1         1         0
4     3     1         1         1         1         0

这是另一种tidyverse方法。简单地说,我们会将数据框从宽转向长,然后进行总结。 Frist 总结摆脱了所有其他非 "A"s。第二次汇总将结果 table 压缩到每个 toolA 标识的唯一 bin 中,并生成 count.

library(dplyr)
library(tidyr)

df %>% 
  mutate(value = +(Tool == "A")) %>%
  pivot_wider(names_from = Year, values_fill = 0L) %>%
  group_by(ID) %>% 
  summarize(across(-Tool, sum)) %>% 
  group_by(toolA = rowSums(across(-ID))) %>% 
  summarize(count = n(), across(-c(ID, count), sum))

输出

# A tibble: 4 x 5
  toolA count `2000` `2001` `2002`
  <dbl> <int>  <int>  <int>  <int>
1     0     1      0      0      0
2     1     2      1      0      1
3     2     1      0      1      1
4     3     1      1      1      1