不一致的 p 值和置信区间
Inconsistent pvalues and confidence intervals
一直在尝试在给定数据集中拟合多元逻辑回归模型,但我似乎发现 'strange results' 有一些变量。 p 值和置信区间似乎不一致。然而,当我尝试在 Stata 中拟合完全相同的模型时,我得到了一致的结果。有没有办法解决这个问题?我需要指定一个选项来满足这个需求吗?...我将如何进行?
library(tidyverse)
set.seed(2021)
testdata <- tibble(
var1 = rbinom(1114, 1, 0.12),
var2 = rbinom(1114, 1, 0.82),
var3 = rbinom(1114, 1, 0.60),
var4 = rbinom(1114, 1, 0.18),
var5 = rbinom(1114, 1, 0.12),
var6 = rbinom(1114, 1, 0.05),
var7 = rbinom(1114, 1, 0.63),
var8 = rbinom(1114, 1, 0.20),
var9 = rbinom(1114, 1, 0.06),
var10 = rbinom(1114, 1, 0.40),
var11 = rbinom(1114, 1, 0.35),
var12 = rbinom(1114, 1, 0.32),
outcome = rbinom(1114, 1, 0.04)
) %>%
mutate(across(.cols = everything(),
~factor(., levels = c(0, 1),
labels = c("No", "Yes"))))
mvariate.regress <- function(outcome, covariates, mydata) {
form <- paste(outcome, "~",
paste(covariates, collapse = " + "))
model1 <- glm(as.formula(form),
data = mydata, family = binomial)
model1
}
ipvars <- paste0("var", 1:12)
mlogitfit <- mvariate.regress("outcome", ipvars, testdata)
summary(mlogitfit)
confint(mlogitfit)
var1 和 var2 pvalues 和 CI 似乎不一致。
Stata Output
Coef. Std. Err. z P>|z| [95% Conf. Interval]
var1 .7269858 .360992 2.01 0.044 .0194544 1.434517
var2 -.6520712 .3250667 -2.01 0.045 -1.28919 -.0149521
似乎 Stata 使用不同的方法计算 CI
一直在尝试在给定数据集中拟合多元逻辑回归模型,但我似乎发现 'strange results' 有一些变量。 p 值和置信区间似乎不一致。然而,当我尝试在 Stata 中拟合完全相同的模型时,我得到了一致的结果。有没有办法解决这个问题?我需要指定一个选项来满足这个需求吗?...我将如何进行?
library(tidyverse)
set.seed(2021)
testdata <- tibble(
var1 = rbinom(1114, 1, 0.12),
var2 = rbinom(1114, 1, 0.82),
var3 = rbinom(1114, 1, 0.60),
var4 = rbinom(1114, 1, 0.18),
var5 = rbinom(1114, 1, 0.12),
var6 = rbinom(1114, 1, 0.05),
var7 = rbinom(1114, 1, 0.63),
var8 = rbinom(1114, 1, 0.20),
var9 = rbinom(1114, 1, 0.06),
var10 = rbinom(1114, 1, 0.40),
var11 = rbinom(1114, 1, 0.35),
var12 = rbinom(1114, 1, 0.32),
outcome = rbinom(1114, 1, 0.04)
) %>%
mutate(across(.cols = everything(),
~factor(., levels = c(0, 1),
labels = c("No", "Yes"))))
mvariate.regress <- function(outcome, covariates, mydata) {
form <- paste(outcome, "~",
paste(covariates, collapse = " + "))
model1 <- glm(as.formula(form),
data = mydata, family = binomial)
model1
}
ipvars <- paste0("var", 1:12)
mlogitfit <- mvariate.regress("outcome", ipvars, testdata)
summary(mlogitfit)
confint(mlogitfit)
var1 和 var2 pvalues 和 CI 似乎不一致。
Stata Output
Coef. Std. Err. z P>|z| [95% Conf. Interval]
var1 .7269858 .360992 2.01 0.044 .0194544 1.434517
var2 -.6520712 .3250667 -2.01 0.045 -1.28919 -.0149521
似乎 Stata 使用不同的方法计算 CI