Delphi - 从多个集合中获取组合
Delphi - Get combinations from multiple sets
使用:Delphi 10.2 东京
请 link 给我一个算法或代码,从多个集合中获取所有可能的值组合,每个集合一个值。事先不知道集合的数量,也不知道每个集合中值的数量。
示例:
1. (1, 2, 3) (A, B)
Desired result:
1 A
1 B
2 A
2 B
3 A
3 B
2. (1, 2, 3, 4) (A, B) (X, Y, Z)
Desired result:
1 A X
1 A Y
1 A Z
2 A X
2 A Y
2 A Z
3 A X
3 A Y
3 A Z
4 A X
4 A Y
4 A Z
1 B X
1 B Y
1 B Z
2 B X
2 B Y
2 B Z
3 B X
3 B Y
3 B Z
4 B X
4 B Y
4 B Z
提前致谢!
二维数组A元素的笛卡尔积的递归和迭代生成(有存储和无存储)
var
A: array of array of Integer;
B: array of array of Integer;
i, j: Integer;
s: string;
NN: Integer;
procedure CartesianRec(From: Integer; cs: string);
var
j: integer;
begin
if From = Length(A) then
Memo1.Lines.Add(cs)
else
for j := 0 to High(A[From]) do
CartesianRec(From + 1, cs + IntToStr(A[From, j]) + ' ');
end;
procedure CartesianIter;
var
i, j, k, l, c, N, M: Integer;
begin
NN := 1;
for k := 0 to High(A) do
NN := NN * Length(A[k]);
SetLength(B, NN, Length(A));
N := NN;
M := 1;
for k := 0 to High(A) do begin
N := N div Length(A[k]);
c := 0;
for l := 0 to M - 1 do
for i := 0 to High(A[k]) do
for j := 0 to N - 1 do begin
B[c, k] := A[k, i];
Inc(c);
end;
M := M * Length(A[k]);
end;
end;
procedure CartesianOnline;
var
i, j, k, l, c, N, M, dimA: Integer;
s: string;
begin
NN := 1;
dimA := Length(A);
//SetLength(CartProduct, dimA);
for k := 0 to dimA - 1 do
NN := NN * Length(A[k]);
for i := 0 to NN - 1 do begin
j := i;
s := '';
for k := dimA - 1 downto 0 do begin
l := j mod Length(A[k]);
s := IntToStr(A[k][l]) + ' ' + s;
//we can also put CartProduct[k] := A[k][l];
j := j div Length(A[k]);
end;
Memo1.Lines.Add(s);
//or use CartProduct
end;
end;
begin
nn := 1;
SetLength(A, 3);
for i := 0 to High(A) do begin
SetLength(A[i], 5 - i);
s := '';
for j := 0 to High(A[i]) do begin
A[i, j] := nn;
Inc(nn);
s := s + IntToStr(A[i, j]) + ' ';
end;
Memo1.Lines.Add(s);
end;
Memo1.Lines.Add('------');
CartesianRec(0, '');
Memo1.Lines.Add('------');
CartesianIter;
for i := 0 to NN - 1 do begin
s := '';
for j := 0 to High(A) do
s := s + IntToStr(B[i, j]) + ' ';
Memo1.Lines.Add(s);
end;
Memo1.Lines.Add('------');
CartesianOnline;
甲:
1 2 3 4 5
6 7 8 9
10 11 12
结果:
1 6 10
1 6 11
1 6 12
1 7 10
1 7 11
1 7 12
1 8 10
1 8 11
1 8 12
1 9 10
1 9 11
1 9 12
2 6 10
2 6 11
...
5 8 12
5 9 10
5 9 11
5 9 12
我使用了 TLists 和 Integer 数组并设法解决了这个问题。这是我的代码:
uses Classes, SysUtils, Generics.Collections;
type
TIntArray = array of integer;
TIntArrayList = TList<TIntArray>;
TCartesianProduct = class
private
FSetList: TIntArrayList;
public
constructor Create;
destructor Destroy; override;
procedure AddSet(ASet: TIntArray);
procedure GetCombinations(var AIntArrayList: TIntArrayList);
end;
implementation
{ TCartesianProduct }
constructor TCartesianProduct.Create;
begin
FSetList := TIntArrayList.Create;
end;
destructor TCartesianProduct.Destroy;
begin
FSetList.Free;
end;
procedure TCartesianProduct.AddSet(ASet: TIntArray);
begin
FSetList.Add(ASet);
end;
procedure TCartesianProduct.GetCombinations(var AIntArrayList: TIntArrayList);
var
WorkList, OuputList: TIntArrayList;
r: TIntArray;
n, c, l: integer;
f: Boolean;
begin
WorkList := TIntArrayList.Create; // Length of each set array, and current iteration index
OuputList := TIntArrayList.Create;
try
n := FSetList.Count;
for c := 0 to n - 1 do
WorkList.Add([Length(FSetList[c]), 0]);
while ((WorkList[0][1] < WorkList[0][0])) do
begin
SetLength(r, n); // result array length is the number of sets
for c := 0 to FSetList.Count - 1 do
begin
r[c] := FSetList[c][WorkList[c][1]];
end;
Inc(WorkList[n - 1][1]); // last work list item (set)
if (WorkList[n - 1][1] = WorkList[n - 1][0]) and (n - 1 <> 0) then // if it equal the length of the set
begin
WorkList[n - 1][1] := 0; // then reset it back to zero
l := n - 1; // make pointer point to previous item up
f := false;
repeat
Dec(l);
if (l >= 0) then
begin
Inc(WorkList[l][1]); // increase index in previous item
if (l <> 0) and (WorkList[l][1] = WorkList[l][0]) then
begin
WorkList[l][1] := 0; // If that items pointer points to the last item, reset it to zero
end
else
f := true;
end
else
f := true;
until f;
end;
OuputList.Add(r);
end;
AIntArrayList.Clear;
for c := 0 to OuputList.Count - 1 do
AIntArrayList.Add(OuputList[c]);
finally
OuputList.Free;
WorkList.Free;
end;
end;
使用以下代码进行测试:
procedure TfmMain.btTestClick(Sender: TObject);
var
intset1, intset2, intset3: TIntArray;
outsetlist: TIntArrayList;
CP: TCartesianProduct;
c, d: Integer;
l: string;
begin
SetLength(intset2, 4);
SetLength(intset3, 4);
intset2[0] := 105;
intset2[1] := 106;
intset2[2] := 107;
intset2[3] := 108;
intset3[0] := 109;
intset3[1] := 110;
intset3[2] := 111;
intset3[3] := 112;
outsetlist := TIntArrayList.Create;
CP := TCartesianProduct.Create;
try
CP.AddSet(intset2);
CP.AddSet(intset3);
CP.GetCombinations(outsetlist);
ListBox1.Clear;
for c := 0 to outsetlist.Count - 1 do
begin
l := '';
for d := 0 to high(outsetlist[c]) do
l := l + Format('%d ', [outsetlist[c][d]]);
ListBox1.Items.Add(l);
end;
finally
CP.Free;
outsetlist.Free;
end;
end;
使用:Delphi 10.2 东京
请 link 给我一个算法或代码,从多个集合中获取所有可能的值组合,每个集合一个值。事先不知道集合的数量,也不知道每个集合中值的数量。
示例:
1. (1, 2, 3) (A, B)
Desired result:
1 A
1 B
2 A
2 B
3 A
3 B
2. (1, 2, 3, 4) (A, B) (X, Y, Z)
Desired result:
1 A X
1 A Y
1 A Z
2 A X
2 A Y
2 A Z
3 A X
3 A Y
3 A Z
4 A X
4 A Y
4 A Z
1 B X
1 B Y
1 B Z
2 B X
2 B Y
2 B Z
3 B X
3 B Y
3 B Z
4 B X
4 B Y
4 B Z
提前致谢!
二维数组A元素的笛卡尔积的递归和迭代生成(有存储和无存储)
var
A: array of array of Integer;
B: array of array of Integer;
i, j: Integer;
s: string;
NN: Integer;
procedure CartesianRec(From: Integer; cs: string);
var
j: integer;
begin
if From = Length(A) then
Memo1.Lines.Add(cs)
else
for j := 0 to High(A[From]) do
CartesianRec(From + 1, cs + IntToStr(A[From, j]) + ' ');
end;
procedure CartesianIter;
var
i, j, k, l, c, N, M: Integer;
begin
NN := 1;
for k := 0 to High(A) do
NN := NN * Length(A[k]);
SetLength(B, NN, Length(A));
N := NN;
M := 1;
for k := 0 to High(A) do begin
N := N div Length(A[k]);
c := 0;
for l := 0 to M - 1 do
for i := 0 to High(A[k]) do
for j := 0 to N - 1 do begin
B[c, k] := A[k, i];
Inc(c);
end;
M := M * Length(A[k]);
end;
end;
procedure CartesianOnline;
var
i, j, k, l, c, N, M, dimA: Integer;
s: string;
begin
NN := 1;
dimA := Length(A);
//SetLength(CartProduct, dimA);
for k := 0 to dimA - 1 do
NN := NN * Length(A[k]);
for i := 0 to NN - 1 do begin
j := i;
s := '';
for k := dimA - 1 downto 0 do begin
l := j mod Length(A[k]);
s := IntToStr(A[k][l]) + ' ' + s;
//we can also put CartProduct[k] := A[k][l];
j := j div Length(A[k]);
end;
Memo1.Lines.Add(s);
//or use CartProduct
end;
end;
begin
nn := 1;
SetLength(A, 3);
for i := 0 to High(A) do begin
SetLength(A[i], 5 - i);
s := '';
for j := 0 to High(A[i]) do begin
A[i, j] := nn;
Inc(nn);
s := s + IntToStr(A[i, j]) + ' ';
end;
Memo1.Lines.Add(s);
end;
Memo1.Lines.Add('------');
CartesianRec(0, '');
Memo1.Lines.Add('------');
CartesianIter;
for i := 0 to NN - 1 do begin
s := '';
for j := 0 to High(A) do
s := s + IntToStr(B[i, j]) + ' ';
Memo1.Lines.Add(s);
end;
Memo1.Lines.Add('------');
CartesianOnline;
甲:
1 2 3 4 5
6 7 8 9
10 11 12
结果:
1 6 10
1 6 11
1 6 12
1 7 10
1 7 11
1 7 12
1 8 10
1 8 11
1 8 12
1 9 10
1 9 11
1 9 12
2 6 10
2 6 11
...
5 8 12
5 9 10
5 9 11
5 9 12
我使用了 TLists 和 Integer 数组并设法解决了这个问题。这是我的代码:
uses Classes, SysUtils, Generics.Collections;
type
TIntArray = array of integer;
TIntArrayList = TList<TIntArray>;
TCartesianProduct = class
private
FSetList: TIntArrayList;
public
constructor Create;
destructor Destroy; override;
procedure AddSet(ASet: TIntArray);
procedure GetCombinations(var AIntArrayList: TIntArrayList);
end;
implementation
{ TCartesianProduct }
constructor TCartesianProduct.Create;
begin
FSetList := TIntArrayList.Create;
end;
destructor TCartesianProduct.Destroy;
begin
FSetList.Free;
end;
procedure TCartesianProduct.AddSet(ASet: TIntArray);
begin
FSetList.Add(ASet);
end;
procedure TCartesianProduct.GetCombinations(var AIntArrayList: TIntArrayList);
var
WorkList, OuputList: TIntArrayList;
r: TIntArray;
n, c, l: integer;
f: Boolean;
begin
WorkList := TIntArrayList.Create; // Length of each set array, and current iteration index
OuputList := TIntArrayList.Create;
try
n := FSetList.Count;
for c := 0 to n - 1 do
WorkList.Add([Length(FSetList[c]), 0]);
while ((WorkList[0][1] < WorkList[0][0])) do
begin
SetLength(r, n); // result array length is the number of sets
for c := 0 to FSetList.Count - 1 do
begin
r[c] := FSetList[c][WorkList[c][1]];
end;
Inc(WorkList[n - 1][1]); // last work list item (set)
if (WorkList[n - 1][1] = WorkList[n - 1][0]) and (n - 1 <> 0) then // if it equal the length of the set
begin
WorkList[n - 1][1] := 0; // then reset it back to zero
l := n - 1; // make pointer point to previous item up
f := false;
repeat
Dec(l);
if (l >= 0) then
begin
Inc(WorkList[l][1]); // increase index in previous item
if (l <> 0) and (WorkList[l][1] = WorkList[l][0]) then
begin
WorkList[l][1] := 0; // If that items pointer points to the last item, reset it to zero
end
else
f := true;
end
else
f := true;
until f;
end;
OuputList.Add(r);
end;
AIntArrayList.Clear;
for c := 0 to OuputList.Count - 1 do
AIntArrayList.Add(OuputList[c]);
finally
OuputList.Free;
WorkList.Free;
end;
end;
使用以下代码进行测试:
procedure TfmMain.btTestClick(Sender: TObject);
var
intset1, intset2, intset3: TIntArray;
outsetlist: TIntArrayList;
CP: TCartesianProduct;
c, d: Integer;
l: string;
begin
SetLength(intset2, 4);
SetLength(intset3, 4);
intset2[0] := 105;
intset2[1] := 106;
intset2[2] := 107;
intset2[3] := 108;
intset3[0] := 109;
intset3[1] := 110;
intset3[2] := 111;
intset3[3] := 112;
outsetlist := TIntArrayList.Create;
CP := TCartesianProduct.Create;
try
CP.AddSet(intset2);
CP.AddSet(intset3);
CP.GetCombinations(outsetlist);
ListBox1.Clear;
for c := 0 to outsetlist.Count - 1 do
begin
l := '';
for d := 0 to high(outsetlist[c]) do
l := l + Format('%d ', [outsetlist[c][d]]);
ListBox1.Items.Add(l);
end;
finally
CP.Free;
outsetlist.Free;
end;
end;