Networkx - 从社区创建图表
Networkx - create graphs from communities
使用以下工作代码:
import netowkx as nx
import networkx.algorithms.community as nx_comm
G = nx.karate_club_graph()
# Find the communities
communities = sorted(nx_comm.greedy_modularity_communities(G), key=len, reverse=True)
# Count the communities
print(f"The club has {len(communities)} communities.")
'''Add community to node attributes'''
for c, v_c in enumerate(communities):
for v in v_c:
# Add 1 to save 0 for external edges
G.nodes[v]['community'] = c + 1
'''Find internal edges and add their community to their attributes'''
for v, w, in G.edges:
if G.nodes[v]['community'] == G.nodes[w]['community']:
# Internal edge, mark with community
G.edges[v, w]['community'] = G.nodes[v]['community']
else:
# External edge, mark as 0
G.edges[v, w]['community'] = 0
如何得到 n
新图(或子图),一个对象(描述为“具有 n 个节点和 w 条边的图”
) 每个社区?
您可以使用与 this 中采用的方法类似的方法。首先,您可以为每个社区创建一个图表。然后,您可以使用 [(u,v,d) for u,v,d in G.edges(data=True) if d['community'] == i+1])
.
标识要添加到每个图形的边
代码如下所示:
import networkx as nx
import networkx.algorithms.community as nx_comm
import matplotlib.pyplot as plt
G = nx.karate_club_graph()
# Find the communities
communities = sorted(nx_comm.greedy_modularity_communities(G), key=len, reverse=True)
# Count the communities
print(f"The club has {len(communities)} communities.")
'''Add community to node attributes'''
for c, v_c in enumerate(communities):
for v in v_c:
# Add 1 to save 0 for external edges
G.nodes[v]['community'] = c + 1
'''Find internal edges and add their community to their attributes'''
for v, w, in G.edges:
if G.nodes[v]['community'] == G.nodes[w]['community']:
# Internal edge, mark with community
G.edges[v, w]['community'] = G.nodes[v]['community']
else:
# External edge, mark as 0
G.edges[v, w]['community'] = 0
N_coms=len(communities)
edges_coms=[]#edge list for each community
coms_G=[nx.Graph() for _ in range(N_coms)] #community graphs
colors=['tab:blue','tab:orange','tab:green']
fig=plt.figure(figsize=(12,5))
for i in range(N_coms):
edges_coms.append([(u,v,d) for u,v,d in G.edges(data=True) if d['community'] == i+1])#identify edges of interest using the edge attribute
coms_G[i].add_edges_from(edges_coms[i]) #add edges
plt.subplot(1,3,i+1)#plot communities
plt.title('Community '+str(i+1))
pos = nx.circular_layout(coms_G[i])
nx.draw(coms_G[i],pos=pos,with_labels=True,node_color=colors[i])
并且输出给出:
使用以下工作代码:
import netowkx as nx
import networkx.algorithms.community as nx_comm
G = nx.karate_club_graph()
# Find the communities
communities = sorted(nx_comm.greedy_modularity_communities(G), key=len, reverse=True)
# Count the communities
print(f"The club has {len(communities)} communities.")
'''Add community to node attributes'''
for c, v_c in enumerate(communities):
for v in v_c:
# Add 1 to save 0 for external edges
G.nodes[v]['community'] = c + 1
'''Find internal edges and add their community to their attributes'''
for v, w, in G.edges:
if G.nodes[v]['community'] == G.nodes[w]['community']:
# Internal edge, mark with community
G.edges[v, w]['community'] = G.nodes[v]['community']
else:
# External edge, mark as 0
G.edges[v, w]['community'] = 0
如何得到 n
新图(或子图),一个对象(描述为“具有 n 个节点和 w 条边的图”
) 每个社区?
您可以使用与 this 中采用的方法类似的方法。首先,您可以为每个社区创建一个图表。然后,您可以使用 [(u,v,d) for u,v,d in G.edges(data=True) if d['community'] == i+1])
.
代码如下所示:
import networkx as nx
import networkx.algorithms.community as nx_comm
import matplotlib.pyplot as plt
G = nx.karate_club_graph()
# Find the communities
communities = sorted(nx_comm.greedy_modularity_communities(G), key=len, reverse=True)
# Count the communities
print(f"The club has {len(communities)} communities.")
'''Add community to node attributes'''
for c, v_c in enumerate(communities):
for v in v_c:
# Add 1 to save 0 for external edges
G.nodes[v]['community'] = c + 1
'''Find internal edges and add their community to their attributes'''
for v, w, in G.edges:
if G.nodes[v]['community'] == G.nodes[w]['community']:
# Internal edge, mark with community
G.edges[v, w]['community'] = G.nodes[v]['community']
else:
# External edge, mark as 0
G.edges[v, w]['community'] = 0
N_coms=len(communities)
edges_coms=[]#edge list for each community
coms_G=[nx.Graph() for _ in range(N_coms)] #community graphs
colors=['tab:blue','tab:orange','tab:green']
fig=plt.figure(figsize=(12,5))
for i in range(N_coms):
edges_coms.append([(u,v,d) for u,v,d in G.edges(data=True) if d['community'] == i+1])#identify edges of interest using the edge attribute
coms_G[i].add_edges_from(edges_coms[i]) #add edges
plt.subplot(1,3,i+1)#plot communities
plt.title('Community '+str(i+1))
pos = nx.circular_layout(coms_G[i])
nx.draw(coms_G[i],pos=pos,with_labels=True,node_color=colors[i])
并且输出给出: