如何基于两个不同的列创建列目标?
How can I create a column target based on two different columns?
我有以下包含 low_scarcity 和 high_scarcity 列的 DataFrame(一个值处于高稀缺性或低稀缺性):
id
low_scarcity
high_scarcity
0
When I was five..
1
I worked a lot...
2
I went to parties...
3
1 week ago
4
2 months ago
5
another story..
我想创建另一个列 'target',当 low_scarcity 列中有一个条目时,该值将为 0,而当 high_scarcity 列中有一个条目时,该值将是 1。就像这样:
id
low_scarcity
high_scarcity
target
0
When I was five..
0
1
I worked a lot...
1
2
I went to parties...
1
3
1 week ago
0
4
2 months ago
0
5
another story..
1
我尝试先用 0 替换没有值的条目,然后创建一个布尔条件,但是我不能使用 .replace('',0)
,因为空列不会显示为空值。
假设您的数据框被称为 df
并且某个值处于高稀缺性或低稀缺性,下面的代码行可以做到这一点
import numpy as np
df['target'] = 1*np.array(df['high_scarcity']!="")
其中 1*
执行布尔值的整数转换。
如果不是这种情况,则应采取更复杂的方法
res = np.array(["" for i in range(df.shape[0])])
res[df['high_scarcity']!=""] = 1
res[df['low_scarcity']!=""] = 0
df['target'] = res
我有以下包含 low_scarcity 和 high_scarcity 列的 DataFrame(一个值处于高稀缺性或低稀缺性):
id | low_scarcity | high_scarcity |
---|---|---|
0 | When I was five.. | |
1 | I worked a lot... | |
2 | I went to parties... | |
3 | 1 week ago | |
4 | 2 months ago | |
5 | another story.. |
我想创建另一个列 'target',当 low_scarcity 列中有一个条目时,该值将为 0,而当 high_scarcity 列中有一个条目时,该值将是 1。就像这样:
id | low_scarcity | high_scarcity | target |
---|---|---|---|
0 | When I was five.. | 0 | |
1 | I worked a lot... | 1 | |
2 | I went to parties... | 1 | |
3 | 1 week ago | 0 | |
4 | 2 months ago | 0 | |
5 | another story.. | 1 |
我尝试先用 0 替换没有值的条目,然后创建一个布尔条件,但是我不能使用 .replace('',0)
,因为空列不会显示为空值。
假设您的数据框被称为 df
并且某个值处于高稀缺性或低稀缺性,下面的代码行可以做到这一点
import numpy as np
df['target'] = 1*np.array(df['high_scarcity']!="")
其中 1*
执行布尔值的整数转换。
如果不是这种情况,则应采取更复杂的方法
res = np.array(["" for i in range(df.shape[0])])
res[df['high_scarcity']!=""] = 1
res[df['low_scarcity']!=""] = 0
df['target'] = res