测量:ipython timeit 与 timeit 方法
Measure : ipython timeit vs timeit method
timeit 模块 timeit() 方法 returns 总时间,但 ipython %timeit returns 更多信息 f.e.
In [17]: %timeit sa.sum()
560 µs ± 9.74 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
是否有可以在您的应用中使用的独立 %timeit python 实现?
在我的 blog 中发布了解决方案。谢谢
我不知道有什么独立的东西,但这可以很容易地从 IPython 中提取出来,它所做的大部分工作是在 TimeitResult
class 中格式化输出 https://github.com/ipython/ipython/blob/8520f3063ca36655b5febbbd18bf55e59cb2cbb5/IPython/core/magics/execution.py#L55-L104
然后是更好的编译时间报告,最差的 运行 比最快的要差得多,并且像 timeit 的 cli 一样自动获取 运行 数字。
重用IPython和python的timeit的代码,去掉一些常用的可能不需要的检查,我们可以得到一个简单的函数来做同样的计时IPython 的方式:
import math
import timeit
def _format_time(timespan, precision=3):
"""Formats the timespan in a human readable form"""
units = ["s", "ms", "\xb5s", "ns"]
scaling = [1, 1e3, 1e6, 1e9]
if timespan > 0.0:
order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
else:
order = 3
scaled_time = timespan * scaling[order]
unit = units[order]
return f"{scaled_time:.{precision}g} {unit}"
class TimeitResult(object):
"""
Object returned by the timeit magic with info about the run.
Contains the following attributes :
loops: (int) number of loops done per measurement
repeat: (int) number of times the measurement has been repeated
best: (float) best execution time / number
all_runs: (list of float) execution time of each run (in s)
compile_time: (float) time of statement compilation (s)
"""
def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision):
self.loops = loops
self.repeat = repeat
self.best = best
self.worst = worst
self.all_runs = all_runs
self.compile_time = compile_time
self._precision = precision
self.timings = [dt / self.loops for dt in all_runs]
@property
def average(self):
return math.fsum(self.timings) / len(self.timings)
@property
def stdev(self):
mean = self.average
return (
math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)
) ** 0.5
def __str__(self):
return "{mean} {pm} {std} per loop (mean {pm} std. dev. of {runs} run{run_plural}, {loops} loop{loop_plural} each)".format(
pm="+-",
runs=self.repeat,
loops=self.loops,
loop_plural="" if self.loops == 1 else "s",
run_plural="" if self.repeat == 1 else "s",
mean=_format_time(self.average, self._precision),
std=_format_time(self.stdev, self._precision),
)
def nice_timeit(
stmt="pass",
setup="pass",
number=0,
repeat=None,
precision=3,
timer_func=timeit.default_timer,
globals=None,
):
"""Time execution of a Python statement or expression."""
if repeat is None:
repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat
timer = timeit.Timer(stmt, setup, timer=timer_func, globals=globals)
# Get compile time
compile_time_start = timer_func()
compile(timer.src, "<timeit>", "exec")
total_compile_time = timer_func() - compile_time_start
# This is used to check if there is a huge difference between the
# best and worst timings.
# Issue: https://github.com/ipython/ipython/issues/6471
if number == 0:
# determine number so that 0.2 <= total time < 2.0
for index in range(0, 10):
number = 10 ** index
time_number = timer.timeit(number)
if time_number >= 0.2:
break
all_runs = timer.repeat(repeat, number)
best = min(all_runs) / number
worst = max(all_runs) / number
timeit_result = TimeitResult(
number, repeat, best, worst, all_runs, total_compile_time, precision
)
# Check best timing is greater than zero to avoid a
# ZeroDivisionError.
# In cases where the slowest timing is lesser than a microsecond
# we assume that it does not really matter if the fastest
# timing is 4 times faster than the slowest timing or not.
if worst > 4 * best and best > 0 and worst > 1e-6:
print(
f"The slowest run took {worst / best:.2f} times longer than the "
f"fastest. This could mean that an intermediate result "
f"is being cached."
)
print(timeit_result)
if total_compile_time > 0.1:
print(f"Compiler time: {total_compile_time:.2f} s")
return timeit_result
nice_timeit("time.sleep(0.3)", "import time")
# IPython license
# BSD 3-Clause License
#
# - Copyright (c) 2008-Present, IPython Development Team
# - Copyright (c) 2001-2007, Fernando Perez <fernando.perez@colorado.edu>
# - Copyright (c) 2001, Janko Hauser <jhauser@zscout.de>
# - Copyright (c) 2001, Nathaniel Gray <n8gray@caltech.edu>
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
timeit 模块 timeit() 方法 returns 总时间,但 ipython %timeit returns 更多信息 f.e.
In [17]: %timeit sa.sum()
560 µs ± 9.74 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
是否有可以在您的应用中使用的独立 %timeit python 实现?
在我的 blog 中发布了解决方案。谢谢
我不知道有什么独立的东西,但这可以很容易地从 IPython 中提取出来,它所做的大部分工作是在 TimeitResult
class 中格式化输出 https://github.com/ipython/ipython/blob/8520f3063ca36655b5febbbd18bf55e59cb2cbb5/IPython/core/magics/execution.py#L55-L104
然后是更好的编译时间报告,最差的 运行 比最快的要差得多,并且像 timeit 的 cli 一样自动获取 运行 数字。
重用IPython和python的timeit的代码,去掉一些常用的可能不需要的检查,我们可以得到一个简单的函数来做同样的计时IPython 的方式:
import math
import timeit
def _format_time(timespan, precision=3):
"""Formats the timespan in a human readable form"""
units = ["s", "ms", "\xb5s", "ns"]
scaling = [1, 1e3, 1e6, 1e9]
if timespan > 0.0:
order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
else:
order = 3
scaled_time = timespan * scaling[order]
unit = units[order]
return f"{scaled_time:.{precision}g} {unit}"
class TimeitResult(object):
"""
Object returned by the timeit magic with info about the run.
Contains the following attributes :
loops: (int) number of loops done per measurement
repeat: (int) number of times the measurement has been repeated
best: (float) best execution time / number
all_runs: (list of float) execution time of each run (in s)
compile_time: (float) time of statement compilation (s)
"""
def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision):
self.loops = loops
self.repeat = repeat
self.best = best
self.worst = worst
self.all_runs = all_runs
self.compile_time = compile_time
self._precision = precision
self.timings = [dt / self.loops for dt in all_runs]
@property
def average(self):
return math.fsum(self.timings) / len(self.timings)
@property
def stdev(self):
mean = self.average
return (
math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)
) ** 0.5
def __str__(self):
return "{mean} {pm} {std} per loop (mean {pm} std. dev. of {runs} run{run_plural}, {loops} loop{loop_plural} each)".format(
pm="+-",
runs=self.repeat,
loops=self.loops,
loop_plural="" if self.loops == 1 else "s",
run_plural="" if self.repeat == 1 else "s",
mean=_format_time(self.average, self._precision),
std=_format_time(self.stdev, self._precision),
)
def nice_timeit(
stmt="pass",
setup="pass",
number=0,
repeat=None,
precision=3,
timer_func=timeit.default_timer,
globals=None,
):
"""Time execution of a Python statement or expression."""
if repeat is None:
repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat
timer = timeit.Timer(stmt, setup, timer=timer_func, globals=globals)
# Get compile time
compile_time_start = timer_func()
compile(timer.src, "<timeit>", "exec")
total_compile_time = timer_func() - compile_time_start
# This is used to check if there is a huge difference between the
# best and worst timings.
# Issue: https://github.com/ipython/ipython/issues/6471
if number == 0:
# determine number so that 0.2 <= total time < 2.0
for index in range(0, 10):
number = 10 ** index
time_number = timer.timeit(number)
if time_number >= 0.2:
break
all_runs = timer.repeat(repeat, number)
best = min(all_runs) / number
worst = max(all_runs) / number
timeit_result = TimeitResult(
number, repeat, best, worst, all_runs, total_compile_time, precision
)
# Check best timing is greater than zero to avoid a
# ZeroDivisionError.
# In cases where the slowest timing is lesser than a microsecond
# we assume that it does not really matter if the fastest
# timing is 4 times faster than the slowest timing or not.
if worst > 4 * best and best > 0 and worst > 1e-6:
print(
f"The slowest run took {worst / best:.2f} times longer than the "
f"fastest. This could mean that an intermediate result "
f"is being cached."
)
print(timeit_result)
if total_compile_time > 0.1:
print(f"Compiler time: {total_compile_time:.2f} s")
return timeit_result
nice_timeit("time.sleep(0.3)", "import time")
# IPython license
# BSD 3-Clause License
#
# - Copyright (c) 2008-Present, IPython Development Team
# - Copyright (c) 2001-2007, Fernando Perez <fernando.perez@colorado.edu>
# - Copyright (c) 2001, Janko Hauser <jhauser@zscout.de>
# - Copyright (c) 2001, Nathaniel Gray <n8gray@caltech.edu>
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.