使用 Python 移动最小值
Shifting minimum values using Python
代码计算每一行的最小值,并通过扫描同一行和下一行的附近元素来选择下一个最小值。相反,我希望代码从第一行的最小值开始,然后通过扫描附近的元素来进行。我不希望它计算每行的最小值。附上输出。
import numpy as np
from scipy.ndimage import minimum_filter as mf
Pe = np.random.rand(5,5)
b = np.zeros((Pe.shape[0], 2))
#the footprint of the window, i.e., we do not consider the value itself or value in the row above
ft = np.asarray([[0, 0, 0],
[1, 0, 1],
[1, 1, 1]])
#applying scipy's minimum filter
#mode defines what should be considered as values at the edges
#setting the edges to INF
Pe_min = mf(Pe, footprint=ft, mode="constant", cval=np.inf)
#finding rowwise index of minimum value
idx = Pe.argmin(axis=1)
#retrieving minimum values and filtered values
b[:, 0] = np.take_along_axis(Pe, idx[None].T, 1).T[0]
b[:, 1] = np.take_along_axis(Pe_min, idx[None].T, 1).T[0]
print(b)
当前输出:
期望输出:
您可以使用一个简单的 while
循环来解决这个问题:对于给定的当前位置,循环的每一步都会遍历邻域以找到所有有效下一个位置中的最小值,然后 update/write它。
由于这在纯 Numpy 中效率很低,您可以使用 Numba 以便可以高效地执行代码。这是实现:
import numpy as np
import numba as nb
Pe = np.random.rand(5,5)
# array([[0.58268917, 0.99645225, 0.06229945, 0.5741654 , 0.41407074],
# [0.4933553 , 0.93253261, 0.1485588 , 0.00133828, 0.09301049],
# [0.49055436, 0.53794993, 0.81358814, 0.25031136, 0.76174586],
# [0.69885908, 0.90878292, 0.25387689, 0.25735301, 0.63913838],
# [0.33781117, 0.99406778, 0.49133067, 0.95026241, 0.14237322]])
@nb.njit('int_[:,:](float64[:,::1])', boundscheck=True)
def minValues(arr):
n, m = arr.shape
assert n >= 1 and m >= 2
res = []
i, j = 0, np.argmin(arr[0,:])
res.append((i, j))
iPrev = jPrev = -1
while iPrev < n-1:
cases = [(i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)]
minVal = np.inf
iMin = jMin = -1
# Find the best candidate (smalest value)
for (i2, j2) in cases:
if i2 == iPrev and j2 == jPrev: # No cycles
continue
if i2 < 0 or i2 >= n or j2 < 0 or j2 >= m: # No out-of-bounds
continue
if arr[i2, j2] < minVal:
iMin, jMin = i2, j2
minVal = arr[i2, j2]
assert not np.isinf(minVal)
# Store it and update the values
res.append((iMin, jMin))
iPrev, jPrev = i, j
i, j = iMin, jMin
return np.array(res)
minValues(Pe)
# array([[0, 2],
# [1, 3],
# [1, 4],
# [2, 3],
# [3, 2],
# [3, 3],
# [4, 4],
# [4, 3]], dtype=int32)
该算法相对较快,因为它在我的机器上仅用了 15 毫秒就成功地在形状 (100_000, 1_000)
的 Pe
数组中找到了长度为 141_855 的路径的结果(尽管它可以被优化)。仅使用 CPython(即没有 Numba JIT)的相同代码需要 591 毫秒。
代码计算每一行的最小值,并通过扫描同一行和下一行的附近元素来选择下一个最小值。相反,我希望代码从第一行的最小值开始,然后通过扫描附近的元素来进行。我不希望它计算每行的最小值。附上输出。
import numpy as np
from scipy.ndimage import minimum_filter as mf
Pe = np.random.rand(5,5)
b = np.zeros((Pe.shape[0], 2))
#the footprint of the window, i.e., we do not consider the value itself or value in the row above
ft = np.asarray([[0, 0, 0],
[1, 0, 1],
[1, 1, 1]])
#applying scipy's minimum filter
#mode defines what should be considered as values at the edges
#setting the edges to INF
Pe_min = mf(Pe, footprint=ft, mode="constant", cval=np.inf)
#finding rowwise index of minimum value
idx = Pe.argmin(axis=1)
#retrieving minimum values and filtered values
b[:, 0] = np.take_along_axis(Pe, idx[None].T, 1).T[0]
b[:, 1] = np.take_along_axis(Pe_min, idx[None].T, 1).T[0]
print(b)
当前输出:
期望输出:
您可以使用一个简单的 while
循环来解决这个问题:对于给定的当前位置,循环的每一步都会遍历邻域以找到所有有效下一个位置中的最小值,然后 update/write它。
由于这在纯 Numpy 中效率很低,您可以使用 Numba 以便可以高效地执行代码。这是实现:
import numpy as np
import numba as nb
Pe = np.random.rand(5,5)
# array([[0.58268917, 0.99645225, 0.06229945, 0.5741654 , 0.41407074],
# [0.4933553 , 0.93253261, 0.1485588 , 0.00133828, 0.09301049],
# [0.49055436, 0.53794993, 0.81358814, 0.25031136, 0.76174586],
# [0.69885908, 0.90878292, 0.25387689, 0.25735301, 0.63913838],
# [0.33781117, 0.99406778, 0.49133067, 0.95026241, 0.14237322]])
@nb.njit('int_[:,:](float64[:,::1])', boundscheck=True)
def minValues(arr):
n, m = arr.shape
assert n >= 1 and m >= 2
res = []
i, j = 0, np.argmin(arr[0,:])
res.append((i, j))
iPrev = jPrev = -1
while iPrev < n-1:
cases = [(i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)]
minVal = np.inf
iMin = jMin = -1
# Find the best candidate (smalest value)
for (i2, j2) in cases:
if i2 == iPrev and j2 == jPrev: # No cycles
continue
if i2 < 0 or i2 >= n or j2 < 0 or j2 >= m: # No out-of-bounds
continue
if arr[i2, j2] < minVal:
iMin, jMin = i2, j2
minVal = arr[i2, j2]
assert not np.isinf(minVal)
# Store it and update the values
res.append((iMin, jMin))
iPrev, jPrev = i, j
i, j = iMin, jMin
return np.array(res)
minValues(Pe)
# array([[0, 2],
# [1, 3],
# [1, 4],
# [2, 3],
# [3, 2],
# [3, 3],
# [4, 4],
# [4, 3]], dtype=int32)
该算法相对较快,因为它在我的机器上仅用了 15 毫秒就成功地在形状 (100_000, 1_000)
的 Pe
数组中找到了长度为 141_855 的路径的结果(尽管它可以被优化)。仅使用 CPython(即没有 Numba JIT)的相同代码需要 591 毫秒。