如何更改列的日期格式并确定 Jupyter 中的年数?

How do I change the date formatting of a column and determine the number of years in Jupyter?

我一直在尝试弄清楚如何使用 Jupyter Notebook 大量更改数据的日期格式(因为数据集上有数百万个数据),因为给我的两个数据集具有不同的日期格式。尝试 google 获取有关如何更改日期格式的代码,但没有成功。例如,我想在合并到数据框后更改“Discharged”和初始数据集的日期格式,所需的输出看起来像这样

数据集(使用 Dataframe 合并)

ID Age Date Seen Date Discharged
001 21 2019-10-22 02-02-2022 08:00:00PM
002 18 2013-05-24 15-05-2019 06:30:00PM

期望输出

ID Age Date Seen Date Discharged Calculated Years (Round Up)
001 21 2019-10-22 2022-02-02 3
002 18 2013-05-24 2019-05-15 6

使用dt.normalize:

# Convert to datetime64 if it's not already the case
df['Date Seen'] = pd.to_datetime(df['Date Seen'])
df['Date Discharged'] = pd.to_datetime(df['Date Discharged'])

# Keep date part and compute years
df['Date Discharged'] = df['Date Discharged'].dt.normalize()
df['Years'] = df['Date Discharged'].dt.year - df['Date Seen'].dt.year

输出:

>>> df
     ID  Age  Date Seen Date Discharged  Years
0   001   21 2019-10-22      2022-02-02      3
1   002   18 2013-05-24      2019-05-15      6