如何在 TFF 的服务器上收集所有客户端权重?
How to gather all client weights at server in TFF?
我正在尝试通过更改此 tutorial 中的代码来使用 TFF 实现自定义聚合。我想重写 next_fn
以便所有客户端权重都放在服务器上以供进一步计算。由于 federated_collect
已从 tff-nightly 中删除,我正在尝试使用 federated_aggregate
.
来做到这一点
这是我目前拥有的:
def accumulate(x, y):
x.append(y)
return x
def merge(x, y):
x.extend(y)
return y
@tff.federated_computation(federated_server_type, federated_dataset_type)
def next_fn(server_state, federated_dataset):
server_weights_at_client = tff.federated_broadcast(
server_state.trainable_weights)
client_deltas = tff.federated_map(
client_update_fn, (federated_dataset, server_weights_at_client))
z = []
agg_result = tff.federated_aggregate(client_deltas, z,
accumulate=tff.tf_computation(accumulate),
merge=tff.tf_computation(merge),
report=tff.tf_computation(lambda x: x))
new_weights = do_smth_with_result(agg_result)
server_state = tff.federated_map(
server_update_fn, (server_state, new_weights))
return server_state
但是这会导致以下异常:
File "/home/yana/Documents/Uni/Thesis/grufedatt_try.py", line 351, in <module>
def next_fn(server_state, federated_dataset):
File "/home/yana/anaconda3/envs/fedenv/lib/python3.9/site-packages/tensorflow_federated/python/core/impl/wrappers/computation_wrapper.py", line 494, in __call__
wrapped_func = self._strategy(
File "/home/yana/anaconda3/envs/fedenv/lib/python3.9/site-packages/tensorflow_federated/python/core/impl/wrappers/computation_wrapper.py", line 222, in __call__
result = fn_to_wrap(*args, **kwargs)
File "/home/yana/Documents/Uni/Thesis/grufedatt_try.py", line 358, in next_fn
agg_result = tff.federated_aggregate(client_deltas, z,
File "/home/yana/anaconda3/envs/fedenv/lib/python3.9/site-packages/tensorflow_federated/python/core/impl/federated_context/intrinsics.py", line 140, in federated_aggregate
raise TypeError(
TypeError: Expected parameter `accumulate` to be of type (<<<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>>,<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>> -> <<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>>), but received (<<>,<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>> -> <<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>>) instead.
尝试使用 tff.aggregators.federated_sample,其中 max_num_samples
等于您拥有的客户数量。
这应该是一个简单的 drop-in 替代您之前使用 tff.federated_collect
的方式。
在您的 accumulate
中,问题是您正在更改累加器将包含的张量数量,因此在累加多个累加器时会出现错误。但是,如果您想这样做,对于具有 k
元素的 rank-1 accumuland,您可能可以改为执行以下操作:
@tff.tf_computation(tff.types.TensorType(tf.float32, [None, k]),
tff.types.TensorType(tf.float32, [k]))
def accumulate(accumulator, accumuland):
return tf.concat([accumulator, tf.expand_dims(accumuland, axis=0)], axis=0)
我正在尝试通过更改此 tutorial 中的代码来使用 TFF 实现自定义聚合。我想重写 next_fn
以便所有客户端权重都放在服务器上以供进一步计算。由于 federated_collect
已从 tff-nightly 中删除,我正在尝试使用 federated_aggregate
.
这是我目前拥有的:
def accumulate(x, y):
x.append(y)
return x
def merge(x, y):
x.extend(y)
return y
@tff.federated_computation(federated_server_type, federated_dataset_type)
def next_fn(server_state, federated_dataset):
server_weights_at_client = tff.federated_broadcast(
server_state.trainable_weights)
client_deltas = tff.federated_map(
client_update_fn, (federated_dataset, server_weights_at_client))
z = []
agg_result = tff.federated_aggregate(client_deltas, z,
accumulate=tff.tf_computation(accumulate),
merge=tff.tf_computation(merge),
report=tff.tf_computation(lambda x: x))
new_weights = do_smth_with_result(agg_result)
server_state = tff.federated_map(
server_update_fn, (server_state, new_weights))
return server_state
但是这会导致以下异常:
File "/home/yana/Documents/Uni/Thesis/grufedatt_try.py", line 351, in <module>
def next_fn(server_state, federated_dataset):
File "/home/yana/anaconda3/envs/fedenv/lib/python3.9/site-packages/tensorflow_federated/python/core/impl/wrappers/computation_wrapper.py", line 494, in __call__
wrapped_func = self._strategy(
File "/home/yana/anaconda3/envs/fedenv/lib/python3.9/site-packages/tensorflow_federated/python/core/impl/wrappers/computation_wrapper.py", line 222, in __call__
result = fn_to_wrap(*args, **kwargs)
File "/home/yana/Documents/Uni/Thesis/grufedatt_try.py", line 358, in next_fn
agg_result = tff.federated_aggregate(client_deltas, z,
File "/home/yana/anaconda3/envs/fedenv/lib/python3.9/site-packages/tensorflow_federated/python/core/impl/federated_context/intrinsics.py", line 140, in federated_aggregate
raise TypeError(
TypeError: Expected parameter `accumulate` to be of type (<<<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>>,<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>> -> <<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>>), but received (<<>,<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>> -> <<float32[9999,96],float32[96,1024],float32[256,1024],float32[1024],float32[256,96],float32[96]>>) instead.
尝试使用 tff.aggregators.federated_sample,其中 max_num_samples
等于您拥有的客户数量。
这应该是一个简单的 drop-in 替代您之前使用 tff.federated_collect
的方式。
在您的 accumulate
中,问题是您正在更改累加器将包含的张量数量,因此在累加多个累加器时会出现错误。但是,如果您想这样做,对于具有 k
元素的 rank-1 accumuland,您可能可以改为执行以下操作:
@tff.tf_computation(tff.types.TensorType(tf.float32, [None, k]),
tff.types.TensorType(tf.float32, [k]))
def accumulate(accumulator, accumuland):
return tf.concat([accumulator, tf.expand_dims(accumuland, axis=0)], axis=0)