基于RBF的曲面逼近
Surface approximation based on RBF
我正在寻找一种基于一组 3D 数据点来近似表面的方法。为此,我想使用基于径向基函数的方法,但我找不到 C++ 中的免费实现。
我查看了 ITK、VTK 并打开了 CV,但我没有找到任何东西...
有人知道这种算法的免费实现吗?
我们也非常欢迎任何关于基于一组 3D 数据点重建表面的建议! :)
3D 表面重建可能具有挑战性。我首先建议看一下 PCL. The Point Cloud Library has grown into a nice set of tools for 3D point management and interpretation, and its license and API sound compatible with your needs. The surface reconstruction features of the library appear to be most applicable. In fact, RBF reconstruction 是否受支持。
如果PCL不行,还有其他选择:
最后,您可以搜索 CiteSeerX, Google Scholar, etc. for papers like this one. As an example, a search for "3D Surface Reconstruction" at CiteSeerX yields many hits. RBF-based reconstruction is just one of many methods: is your application truly limited to radial basis functions? If not, there are many choices, (i.e. Ball Pivoting Algorithm). See this 调查文件进行一些比较。
我正在寻找一种基于一组 3D 数据点来近似表面的方法。为此,我想使用基于径向基函数的方法,但我找不到 C++ 中的免费实现。 我查看了 ITK、VTK 并打开了 CV,但我没有找到任何东西...
有人知道这种算法的免费实现吗?
我们也非常欢迎任何关于基于一组 3D 数据点重建表面的建议! :)
3D 表面重建可能具有挑战性。我首先建议看一下 PCL. The Point Cloud Library has grown into a nice set of tools for 3D point management and interpretation, and its license and API sound compatible with your needs. The surface reconstruction features of the library appear to be most applicable. In fact, RBF reconstruction 是否受支持。
如果PCL不行,还有其他选择:
最后,您可以搜索 CiteSeerX, Google Scholar, etc. for papers like this one. As an example, a search for "3D Surface Reconstruction" at CiteSeerX yields many hits. RBF-based reconstruction is just one of many methods: is your application truly limited to radial basis functions? If not, there are many choices, (i.e. Ball Pivoting Algorithm). See this 调查文件进行一些比较。